UNA INVESTIGACIÓN HISTÓRICA, TEÓRICA Y MATEMÁTICA SOBRE EL CARÁCTER DIALÉCTICO DE LOS FUNDAMENTOS EPISTEMOLÓGICOS DE LA COMPLEJIDAD EN LOS SISTEMAS DINÁMICOS NO-LINEALES DE LARGO PLAZO

ISADORE NABI

Abstracto

Desde Pierre-Simon Laplace en 1840 con su célebre “Ensayo Filosófico Sobre Probabilidades”, los filósofos y científicos se han interesado por dicotomía, sugerida por la observación de los hechos de la realidad, entre la incertidumbre y el determinismo. Henri Poincaré en 1908 coge el testigo de Laplace, comenzando así el esfuerzo consciente por unificarlas filosóficamente y dando así nacimiento a la Teoría del Caos, para que luego Edward Lorenz en 1963 diera a luz los Sistemas Complejos en su investigación titulada “Deterministic Nonperiodic Flow” y finalmente fue Benoit Mandelbrot en 1982 quien revolucionó la Geometría con el planteamiento de las superficies fractales en su obra “La Geometría Fractal de la Naturaleza”. Así como para los sistemas complejos ha sido de vital importancia ir comprendiendo unificadamente el caos y el determinismo, también fue para los sistemas filosóficos (particularmente la Antigua Grecia y del Idealismo Clásico Alemán) alcanzar precisión en las definiciones de las categorías esencia, forma, contenido, apariencia y fenómeno. Estas categorías filosóficas fueron trabajadas por los filósofos soviéticos en su búsqueda por comprender de manera holista la realidad, siendo plasmadas en el célebre “Diccionario Filosófico” publicado en 1971. La presente investigación plantea que la forma óptima de instrumentalizar esa visión filosófica es nutriéndola de los hallazgos realizados en el campo de la Teoría del Caos y también que la forma óptima de depurar teóricamente lo relacionado a los sistemas complejos es mediante su análisis a la luz de la Lógica Dialéctica-Materialista.

Palabras Clave: Materialismo Dialéctico, Sistemas Complejos, Fractales, Teoría del Caos, Escuela de Filosofía Soviética.

REREFENCIAS

Aravindh, M., Venkatesan, A., & Lakshmanan, M. (2018). Strange nonchaotic attractors for computation. Physical Review E, 97(5), 1-10. doi:https://doi.org/10.1103/PhysRevE.97.052212

Barnet, W., & Chen, P. (1988). Deterministic Chaos and Fractal Atrractors as Tools for NonParametric Dynamical Econometric Inference: With An Application to the Divisa Monetary Aggregates. Computational Mathematics and Modeling, 275-296. Obtenido de http://www.maths.usyd.edu.au/u/gottwald/preprints/testforchaos_MPI.pdf

Bjorvand, A. (1995). A New Approach to Intelligent Systems Theory. The Norwegian Institute of Technology, The University of Trondheim, Faculty of Electrical Engineering and Computer Science. Trondheim: The University of Trondheim. Recuperado el 15 de Abril de 2020, de https://www.anderstorvillbjorvand.com/_service/53/download/id/3378/name/19950428_project_report_fractal_logic.pdf

Elert, G. (11 de Agosto de 2020). Flow Regimes – The Physics Hypertextbook. Recuperado el 11 de Agosto de 2020, de https://physics.info/turbulence/

Gottwald, G., & Melbourne, I. (2016). The 0-1 Test for Chaos: A review. En U. Parlitz, E. G. Lega, R. Barrio, P. Cincotta, C. Giordano, C. Skokos, . . . J. Laskar, & C. G. Sokos (Ed.), Chaos Detection and Predictability (págs. 221-248). Berlin: Springer.

Halperin, B. (2019). Theory of dynamic critical phenomena. Physics Today, 72(2), 42-43. doi:10.1063/PT.3.4137

Jaynes, E. (2003). Probability Theory. The Logic of Science. Cambridge University Press: New York.

Kessler, D., & Greenkorn, R. (1999). Momentum, Heat, and Mass Transfer Fundamentals. New York: Marcel Denker, Inc.

Kilifarska, N., Bakmutov, V., & Melnyk, G. (2020). The Hidden Link Between Earth’s Magnetic Field and Climate. Leiden: Elsevier.

Landau, L. (1994). Física Teórica. Física Estadística (Segunda ed., Vol. 5). (S. Velayos, Ed., & E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Laplace, P.-S. (1902). A Philosophical Essay on Probabilities (1 ed.). (E. M. Pinto, Trad.) London: JOHN WILEY & SONS. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lesne, A. (1998). Renormalization Methods. Critical Phenomena, Chaos, Fractal Structures. Baffins Lane, Chichester, West Sussex, England: John Wiley & Sons Ltd.

Lesne, A., & Laguës, M. (2012). Scale Invariance. From Phase Transitions to Turbulence (Primera edición, traducida del francés (que cuenta con dos ediciones) ed.). New York: Springer.

Li, S., & Li, H. (2006). Parallel AMR Code for Compressible MHD or HD Equations. Los Alamos National Laboratory, Mathematical Modeling and Analysis. Nuevo México: Applied Mathematics and Plasma Physics. Obtenido de https://web.archive.org/web/20160303182548/http://math.lanl.gov/Research/Highlights/amrmhd.shtml

Linder, J., Kohar, V., Kia, B., Hippke, M., Learned, J., & Ditto, W. (4 de Febrero de 2015). Strange nonchaotic stars. Recuperado el 16 de Abril de 2020, de Nonlinear Sciences > Chaotic Dynamics: https://arxiv.org/pdf/1501.01747.pdf

Lorenz, E. (1963). Deterministic Nonperiodic Flow. JOURNAL OF THE ATMOSPHERIC SCIENCES, 20, 130-141.

Mandelbrot, B. (1983). THE FRACTAL GEOMETRY OF NATURE. New York: W.H. Freeman and Company.

Marxist.org. (21 de Junio de 2018). Formal Logic and Dialectics. Recuperado el 14 de Abril de 2020, de The Meaning of Hegel’s Logic: https://www.marxists.org/reference/archive/hegel/help/mean05.htm

McCullagah, P., & Nelder, J. (1989). Generalized Linear Models (Segunda ed.). New York, United States of America: Chapman & Hall.

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para el TCL con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/UYRwHZaS

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para la LGN con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/wVAiBTQZ

Oestreicher, C. (2007). A history of chaos theory. Dialogues in Clinical Neuroscience, 9(3), 279–289. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/pdf/DialoguesClinNeurosci-9-279.pdf

Pezard, L., & Nandrino, J. (2001). Paradigme dynamique en psychopathologie: la “Théorie du chaos”, de la physique à la psychiatrie [Dynamic paradigm in psychopathology: “chaos theory”, from physics to psychiatry]. Encephale, 27(3), 260-268. Obtenido de https://pubmed.ncbi.nlm.nih.gov/11488256/

Poincaré, H. (1908). Chance. En H. Poincaré, Science and Method (págs. 64-90). London: THOMAS NELSON AND SONS. Obtenido de https://www.stat.cmu.edu/~cshalizi/462/readings/Poincare.pdf

Princeton University. (30 de Septiembre de 2019). The Fundamental Postulate . Obtenido de http://assets.press.princeton.edu/chapters/s3_9634.pdf

ResearchGate. (3 de Mayo de 2018). When should one use Fuzzy set theory and Rough set theory? Is there any clear-cut line of difference between them? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/When_should_one_use_Fuzzy_set_theory_and_Rough_set_theory_Is_there_any_clear-cut_line_of_difference_between_them

ResearchGate. (2 de Mayo de 2020). What is the difference between Fuzzy rough sets and Rough fuzzy sets? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/What_is_the_difference_between_Fuzzy_rough_sets_and_Rough_fuzzy_sets

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Russell, K. (29 de Enero de 2014). Hypothesis testing. Recuperado el 15 de Abril de 2020, de Stats – Kevin Russell – University of Manitoba: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

Sharma, V. (2003). Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier. The Open Cardiovascular Medicine Journal(3), 110-123.

Stanford Encyclopedia of Philosophy. (4 de Febrero de 2002). Quantum Logic and Probability Theory. Recuperado el 6 de Julio de 2020, de https://plato.stanford.edu/entries/qt-quantlog/

Valdebenito, E. (1 de Julio de 2019). Fractales: La Geometría del Caos. Recuperado el 11 de Agosto de 2020, de viXra: https://vixra.org/pdf/1901.0152v1.pdf

Werndl, C. (2013). What Are the New Implications of Chaos for Unpredictability? The British Journal for the Philosophy of Science, 60(1), 1-25. doi:10.1093/bjps/axn053

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s