UNA APROXIMACIÓN TEÓRICA A LA DETERMINACIÓN DE LA IGUALDAD DE VARIANZAS DE DOS POBLACIONES

ISADORE NABI

Si las medias r-ésimas (los r-ésimos estadísticos de prueba) son únicas y existe convergencia en distribución entre las muestras en comparación distribución, estas tendrán también las mismas medias r-ésimas. Para garantizar la unicidad de los momentos debe garantizarse que la muestra y la población sean finitas o, a lo sumo, infinitas numerables (que sea posible poderla poner en correspondencia uno-a-uno con los números naturales); mientras que para garantizar que converjan en distribución debe garantizarse (aunque no es el único camino, más sí el óptimo para estos fines) antes la convergencia en media r-ésima, que para el caso de los espacios euclidianos y sus generalizaciones naturales (los espacios de Hilbert) debe ser convergencia en media cuadrática (porque la norma de tales espacios es de carácter cuadrático y sirve para estimar distancias bajo una lógica también cuadrática). Adicionalmente, en términos matemáticos, que converjan en media cuadrática garantiza que converjan en varianza. Que converjan en media cuadrática se verifica, en el contexto de los espacios ya mencionados, cuando se certifica a través de una prueba de hipótesis rigurosa que las medias de las dos poblaciones no difieren en términos estadísticamente significativos. Si el conjunto de condiciones anteriormente expuesto se cumple, entonces que dos muestras tengan la misma distribución y la misma media implica que su varianza será igual, lo que formalmente hablando implica que sus varianzas tenderán a ser iguales a medida se aproximen al tamaño de la población de la cual son parte. Debido a que una distribución no es caracterizada unívocamente por sus momentos sino por su función característica (si todos sus momentos son finitos), la cual es la solución a la ecuación integral generada tras la aplicación de la transformación de Fourier a la distribución de probabilidad en cuestión, la unicidad de los momentos implica formalmente hablando, además de la restricción antes impuesta sobre el tamaño de la muestra y la población, que las distribuciones de probabilidad tengan la misma función característica. Los parámetros de transformación de Fourier son, por definición, los mismos para todos los casos (a=1, b=1). El hecho de que las poblaciones sean o no sean homogéneas no es explícitamente relevante en términos teóricos puesto que la matemática pura no establece teoremas contemplando aspectos esenciales de los fenómenos que modela de manera abstracta-formal (garantiza que la heterogeneidad no sea un problema -en el terreno asintótico- al establecer los pre-requisitos antes mencionados, como se verá en el contexto aplicado). En términos aplicados es, sin lugar a dudas, completamente relevante porque puede tener implicaciones en que la diferencia en variabilidad de las muestras sea estadísticamente significativa; sin embargo, lo que se desprende en términos prácticos de lo expuesto teóricamente antes es que si dos muestras tienen la misma forma geométrica general (la misma distribución, que implica que los conjuntos de datos siguen el mismo patrón geométrico), más allá de variaciones de escala (producto de variaciones no significativas en los parámetros, es decir, variaciones que no cambian el tipo específico de distribución de la que se trate) y además existe convergencia en media (que es una forma rigurosa de expresar que, aproximadamente hablando, tendrán la misma media), también existirá convergencia en varianza, es decir, que las varianzas, diferirán a lo sumo, en una constante arbitraria C*, que se expresa teóricamente como el residuo de la solución a la ecuación integral antes mencionada. Por lo anterior, no es necesario realizar una prueba de potencia para la igualdad de varianzas establecida con prueba F, simplemente basta con verificar que las poblaciones sean las mismas, tengan el mismo tamaño de muestra y tengan la misma media para saber que tendrán la misma varianza o segundo momento.

ASPECTOS CONCEPTUALES GENERALES DEL DISEÑO EXPERIMENTAL POR BLOQUES

ISADORE NABI

Como se señala en (Dey, 2010, págs. 1-2), en determinadas situaciones experimentales, puede haber variaciones sistemáticas presentes entre las unidades experimentales[1]. Por ejemplo, en un experimento de campo, las unidades experimentales suelen ser parcelas de tierra. En un experimento de este tipo, puede haber un gradiente de fecundidad tal que las parcelas del mismo nivel de fecundidad sean más homogéneas que las que tienen distintos niveles de fecundidad. En experimentos con lechones como unidades experimentales, es muy plausible que los lechones pertenecientes a la misma camada estén genéticamente más cercanos entre sí (naciendo del mismo par de padres) que los que pertenecen a diferentes camadas. De manera similar, en experimentos con ganado, pueden estar involucradas diferentes razas (o diferentes edades) y se espera que los animales que pertenecen a la misma raza sean más parecidos que los que pertenecen a diferentes razas. En el contexto de los ensayos clínicos con pacientes que forman las unidades experimentales, el ensayo puede realizarse en diferentes centros (principalmente para obtener un número suficiente de observaciones) y los pacientes del mismo centro pueden ser más parecidos que los de diferentes centros debido a las diferencias en el tratamiento. prácticas y/o procedimientos de gestión seguidos en los diferentes centros. Los ejemplos anteriores, que son meramente ilustrativos y de ninguna manera exhaustivos, demuestran que en muchas situaciones existe una variación sistemática entre las unidades experimentales. En tales situaciones, el uso de un diseño completamente aleatorio no es apropiado. Más bien, se debe aprovechar la información a priori sobre esta variación sistemática mientras se diseña el experimento en el sentido de que esta información se debe utilizar durante el diseño para eliminar el efecto de dicha variabilidad. El impacto de este esfuerzo se verá reflejado en un error reducido, aumentando así la sensibilidad del experimento. Las consideraciones anteriores llevaron a la noción de control o bloqueo local. Los grupos de unidades experimentales relativamente homogéneas se denominan bloques. Cuando el bloqueo se realiza de acuerdo con un atributo, obtenemos un diseño de bloque. En un diseño de bloques, los tratamientos se aplican aleatoriamente a las unidades experimentales dentro de un bloque, y la asignación aleatoria de tratamientos a las unidades experimentales dentro de un bloque se realiza de forma independiente en cada bloque. El más simple entre los diseños de bloques es el diseño de bloques completos al azar.

Adicionalmente, (Batabyal, Sarkar, & Mandal, 2015, pág. 19) señalan que el experimento de gradiente de fertilidad (específicamente el del experimento por ellos analizado) se realizó antes del experimento del cultivo de prueba según la metodología inductiva propuesta por Ramamoorthy et al (1967), durante el verano de 2008-09, dividiendo el campo experimental en tres franjas rectangulares a lo largo del ancho. Los gradientes de fertilidad se crearon aplicando dosis graduadas de fertilizante N, P y K en las tiras como se muestra en la Tabla 1. El maíz forrajero se cultivó exhaustivamente para ayudar a que los fertilizantes se transformaran en el suelo por la planta y los microbios.

Figura 1

Fuente: (Batabyal, Sarkar, & Mandal, 2015, pág. 19).

La referencia anterior permite comprender conceptualmente el concepto gradiente al que se refirió Aloke Day en penúltima referencia realizada, así como también generalizar conceptualmente lo expuesto por este autor. Así, expresando de forma abstracta lo anterior, puede afirmarse que, en ciertas condiciones experimentales, pueden presentarse variaciones sistemáticas entre las unidades experimentales. En tales experimentos, existe variabilidad diferenciada en la distribución de los datos muestrales en las subregiones del espacio de muestra (en la teoría del diseño muestral estas subregiones son conocidas como bloques) a causa de un conjunto de factores subyacentes (por ello se considera la variabilidad de carácter sistemático) y esa variabilidad diferenciada por regiones se expresa matemáticamente como un gradiente, es decir, como una matriz en cuyo interior se contienen las derivadas parciales de primer orden de la función objetivo (la que explica la propagación diferenciada de la variabilidad) evaluadas en las subregiones pertinentes. Esta es la forma usual en que en el contexto de la teoría del diseño de experimentos y los ensayos clínicos se maneja el problema de volatilidad diferenciada de la varianza. El concepto bloque formaliza la noción de control local e implica cierta homogeneidad mínima entre los elementos de cada grupo, tiene como objetivo diseñar el experimento de tal forma que se elimine el efecto de esta variabilidad sistemática. Por supuesto, en otros contextos aplicados distintos de los ensayos clínicos puede desearse analizar el comportamiento del fenómeno estudiado considerando los efectos que la variabilidad diferenciada de la varianza y por ello existen modelos como el de heterocedasticidad condicional autorregresiva. Cuando los bloques han sido organizados alrededor de un atributo se está en presencia de un diseño por bloques y, en tal escenario, las variables explicativas (los tratamientos experimentales, para el caso aplicado) son consideradas como aleatorias (se aplican aleatoriamente sobre las unidades experimentales -pacientes humanos o de otra especie- al interior de un bloque). Esto se establece bajo el supuesto de que la aplicación de tales tratamientos a los elementos de cada bloque es linealmente independiente o, lo que es lo mismo, que al realizar la operación producto vectorial (exterior) entre los vectores que contienen las variables consideradas como estocásticas se genera un sistema de ecuaciones homogéneo de solución no nula.

Como señala (Dey, 2010, pág. 3), el más simple entre los diseños de bloques es el diseño de bloques completos al azar. En tal diseño, se requiere que cada bloque tenga tantas unidades experimentales como el número de tratamientos a evaluar, es decir, el tamaño del bloque sea igual al número de tratamientos. Sin embargo, no siempre es posible adoptar un diseño de bloques completos al azar en cada situación experimental. En primer lugar, si se supone que la variación intrabloque depende directamente del tamaño del bloque, entonces es preferible la adopción de un diseño con bloques de tamaños pequeños a uno que tenga tamaños de bloque grandes. Esto restringe el uso de diseños de bloques completos al azar en situaciones donde el número de tratamientos es grande. Por ejemplo, en los experimentos agronómicos, el experimentador generalmente elige un bloque de tamaño 10-12 y, si se acepta, no se puede adoptar un diseño de bloque completo al azar en situaciones en las que, digamos, se van a comparar 20 tratamientos. Además, en muchas situaciones experimentales, el tamaño del bloque está determinado por la naturaleza del experimento. Por ejemplo, con algunos experimentos en psicología, es bastante común considerar a los dos miembros de un par de gemelos como unidades experimentales de un bloque. En ese caso, claramente no se puede realizar diseño de bloques completos al azar si el número de tratamientos es mayor que dos (puesto que por definición en cada bloque existirá únicamente una observación -. De manera similar, es razonable tomar a los compañeros de camada (por ejemplo, ratones) como unidades de un bloque y el tamaño de la camada puede no ser adecuado para acomodar todos los tratamientos bajo prueba.

Los pocos ejemplos considerados anteriormente muestran claramente que, en muchas situaciones, no se puede adoptar un diseño de bloques completos al azar y, por lo tanto, es necesario buscar diseños en los que no todos los tratamientos aparezcan en cada bloque. Estos diseños se denominan diseños de bloques incompletos. Como señala (Dey, 2010, págs. 3-4), el tipo de diseño más importante del conjunto de diseños balanceados es el diseño de bloques balanceado e incompleto (BIB, por su nombre en inglés) y sobre ellos debe decirse que estos todavía se encuentran útiles en el diseño de experimentos en diversos campos y en los últimos años se han encontrado aplicaciones más nuevas de estos diseños, por ejemplo, en criptografía visual (véase, por ejemplo, Bose y Mukerjee (2006), Adhikary, Bose, Kumar y Roy (2007) y las referencias allí citadas).

Como señala (Wikipedia, 2021), el diseño por bloques es una estructura de incidencia[2] consistente en un conjunto de elementos expresados en familias denominadas bloques, escogidos tal que las frecuencias de los elementos satisfacen ciertas condiciones que permiten que la colección de bloques exhiba simetría (balance de bloques). Si no se dan más especificaciones, usualmente por “diseño de bloques” se hace referencia a un diseño de bloques balanceado e incompleto. Se dice que un diseño está balanceado hasta τ si todos los subconjuntos τ del conjunto original se presentan (como evento estadístico) en la misma cantidad de bloques λ. Cuando τ no está especificado, generalmente se puede suponer que es 2, lo que significa que cada par de elementos se encuentra en el mismo número de bloques y el diseño está “balanceado por pares”. Cualquier diseño equilibrado hasta τ también está equilibrado en todos los valores más bajos de τ (aunque con diferentes valores para λ). Por ejemplo, un diseño balanceado por pares (τ=2) es también regular (τ=1). Cuando falla el requisito de equilibrio, un diseño puede estar parcialmente equilibrado si los subconjuntos τ se pueden dividir en n-ésimas clases, cada una con su correspondiente (y diferente) valor para λ.

Así, señala última fuente referida que, para el caso de τ=2, estos diseños por bloques se conocen como PBIB(n), cuyas clases forman un esquema de asociación[3]. La teoría de los esquemas de asociación generaliza la teoría de los caracteres de representación lineal de grupos (y, por consiguiente, los esquemas de asociación generalizan la noción de grupos). Por lo general, se asume que los diseños están incompletos, lo que significa que ningún bloque contiene todos los elementos del conjunto, descartando así un diseño trivial (esta es otra forma en que se expresa la creencia de la estadística matemática clásica de que, si en un sistema de ecuaciones una ecuación es linealmente dependiente de otra u otras, entonces la variable que es descrita mediante tal ecuación no aporta información relevante). Los diseños por bloques pueden tener (o no) bloques repetidos. Cuando no tienen bloques repetidos, se denominan simples, en cuyo caso la familia de bloques es un conjunto en lugar de un multiconjunto. En estadística, el diseño de bloques se extiende a diseños de bloques no binarios los cuales pueden contener múltiples copias de un elemento de X, lo que implica que un diseño es regular sólo si es también binario. La matriz de incidencia de un diseño no binario (véase más adelante) enlista el número de veces que cada elemento de repite en cada bloque.

Adicionalmente, como señala (Dey, 2010, pág. 4), existen generalizaciones de los diseños BIB. Los diseños BIB son los únicos diseños en la clase de diseños de experimentos binarios[4], equirreplicados[5] y propios[6] que son balanceados (según se definió antes) tanto en varianza como en eficiencia; sin embargo, es posible encontrar otros diseños con equilibrio de varianza y eficiencia si uno expande la clase de diseños a diseños no binarios, no equirreplicados o no apropiados. Los métodos de construcción de diseños balanceados en varianza y eficiencia con replicaciones posiblemente desiguales y tamaños de bloques desiguales son el estado del arte más avanzado en el ámbito de los diseños balanceados.

Además, como se señala en la última fuente referida, existen los diseños de experimentos por bloques parcialmente balanceados, dentro de los cuales los más estudiados y aplicados empíricamente son los diseños de bloques parcialmente balanceados (PBIB, por su nombre en inglés). Los diseños de PBIB se introducen formalmente mediante la noción de esquema de asociación antes definida. Existen diseños con dos o más clases asociadas, así como también otros diseños parcialmente balanceados que no son necesariamente diseños PBIB. Estos incluyen los diseños conocidos como de celosía, cíclico, bloque enlazado, diseños en C y diseños α.

REFERENCIAS

Batabyal, K., Sarkar, D., & Mandal, B. (2015). Fertilizer-prescription equations for targeted yield in radish under integrated nutrient management system. Journal of Horticultural Sciences, X(1), 18-23. Obtenido de blob:resource://pdf.js/782dc541-51e4-4535-9551-8b7db5f35d1b

Dey, A. (2010). Incomplete Block Design. Tob Tuck Link, Singapore: World Scientific Publishing Co. Pte. Ltd.

Gupta, S. C., & Jones, B. (Agosto de 1983). Equireplicate Balanced Block Designs with Unequal Block Sizes. Biometrika, LXX(2), 433-440.

Shah, K. R., & Ashish, D. (Septiembre de 1992). Binary Designs Are Not Always the Bes. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, XX(3), 347-351.

Weisstein, E. W. (19 de Septiembre de 2021). Monoid. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Monoid.html

Wikipedia. (6 de Julio de 2021). Block design. Obtenido de Design of experiments: https://en.wikipedia.org/wiki/Block_design

Wikipedia. (27 de Septiembre de 2021). Incidence structure. Obtenido de Incidence geometry: https://en.wikipedia.org/wiki/Incidence_structure


[1] La variabilidad diferenciada de la varianza se encuentra en la literatura bajo el nombre de homogeneidad de varianza u homocedasticidad. Sin embargo, debe señalarse que no necesariamente son equivalentes metodológicamente, lo cual se explica por el hecho de que filosófica e históricamente no lo son. La heterocedasticidad tiene su génesis conceptual en el contexto de las estructuras de datos conocidas como series temporales, mientras que la homogeneidad de varianza tiene su génesis histórica en las estructuras de datos de sección cruzada. La posibilidad de su divergencia metodológica puede verificarse si alguna prueba para varianza no se puede hacer para sección cruzada y sí se puede hacer para series temporales (y/o para datos de panel, lo cual sería necesario investigar) o, por supuesto, a la inversa, que se pueda realizar para datos de sección cruzada y/o de panel, mientras que no sea posible para datos de series temporales (o bien, que sea posible para una estructura de datos, mientras que para la otra y su estructura combinada -datos de panel- no sea posible). Si no son diferentes, resulta técnicamente adecuado (con el fin de evitar ambigüedades) hablar de variabilidad diferenciada de la varianza, en lugar de hablar de “homogeneidad de varianza” o “heterocedasticidad” (puesto que los diferenciaría en un contexto en que son equivalentes). Así, aunque la posibilidad de su equivalencia o divergencia conceptual sea una cuestión fundamentalmente filosófica, su diferenciación se encuentra en las minucias metodológicas de las distintas técnicas estadísticas para medir y clasificar la variabilidad de la varianza. Por supuesto, sus diferencias filosóficas están basada en un hecho histórico-técnico concreto innegable: ambas estructuras de datos son distintas.

[2] Como señala (Wikipedia, 2021), una estructura de incidencia es un sistema abstracto consistente en dos tipos de objeto y una relación única entre ellos que se conoce como estructura de incidencia Se consideran una generalización del concepto de plano. Por su definición, son una estructura métrica vinculada a una estructura algebraica.

[3] Un esquema de asociación es un concepto algebraico que generaliza la noción de grupo. Un grupo es un monoide en el que además se cumple que sus elementos son invertibles. Un monoide es un conjunto cerrado (el equivalente matemático de autocontenido) bajo una operación asociativa binaria y con elemento identidad I que pertenece a S tal que para todo elemento a que pertenece a S se cumple que I*a = a*I = a y se diferencia de un grupo en el sentido de que no exige que sus elementos sean invertibles bajo alguna operación. Véase (Weisstein, 2021).

[4] Como se señala en (Shah & Ashish, 1992, pág. 347), un diseño en el que cada tratamiento aparece como máximo una vez en cualquier bloque en particular.

[5] Como se señala en (Gupta & Jones, 1983, pág. 433), un diseño por bloques equirreplicado es aquel en el que las variables independientes (en el contexto de la bioestadística y la psicometría usualmente son los tipos de tratamiento) se repiten en cada bloque la misma cantidad de veces.  

[6] Como se señala en (Wikipedia, 2021), un diseño por bloques es propio cuando todos los bloques tienen el mismo tamaño. También, como se señala en la fuente referida, se estudian también diseños por bloques que no son necesariamente uniformes; para τ=2 se conocen en la bibliografía bajo el nombre general de diseños equilibrados por pares, en donde cada par de elementos de X (cada par de elementos el conjunto de variables independientes) está contenido en exactamente en λ subconjuntos o bloques, en donde λ pertenece a los números naturales.

ASPECTOS TEÓRICOS GENERALES SOBRE LA MATRIZ DE DISEÑO ESTRUCTURAL

ISADORE NABI

Como se señala en (Eppinger & Browning, 2012, págs. 2-4), la matriz de diseño estructural (DSM de ahora en adelante, por sus siglas en inglés) es una herramienta de modelado de redes que se utiliza para representar los elementos que componen un sistema y sus interacciones, destacando así la arquitectura del sistema (o estructura diseñada). DSM se adapta particularmente bien a aplicaciones en el desarrollo de sistemas de ingeniería complejos y, hasta la fecha, se ha utilizado principalmente en el área de gestión de ingeniería. Sin embargo, en el horizonte hay una gama mucho más amplia de aplicaciones de DSM que abordan problemas complejos en la gestión de la atención médica, los sistemas financieros, las políticas públicas, las ciencias naturales y los sistemas sociales. El DSM se representa como una matriz cuadrada N x N, que mapea las interacciones entre el conjunto de N elementos del sistema. DSM, una herramienta muy flexible, se ha utilizado para modelar muchos tipos de sistemas. Dependiendo del tipo de sistema que se modele, DSM puede representar varios tipos de arquitecturas. Por ejemplo, para modelar la arquitectura de un producto, los elementos de DSM serían los componentes del producto y las interacciones serían las interfaces entre los componentes (figura 1.1.a).

Fuente: (Eppinger & Browning, 2012, pág. 1).

Para modelar la arquitectura de una organización, los elementos de DSM serían las personas o equipos de la organización, y las interacciones podrían ser comunicaciones entre las personas (figura l.1.b). Para modelar una arquitectura de proceso, los elementos del DSM serían las actividades en el proceso, y las interacciones serían los flujos de información y/o materiales entre ellos (figura l.l.c). Los modelos DSM de diferentes tipos de arquitecturas pueden incluso combinarse para representar cómo se relacionan los diferentes dominios del sistema dentro de un sistema más grande (figura l.l.d). Por tanto, el DSM es una herramienta genérica para modelar cualquier tipo de arquitectura de sistema. En comparación con otros métodos de modelado de redes, el principal beneficio de DSM es la naturaleza gráfica del formato de visualización de la matriz. La matriz proporciona una representación muy compacta, fácilmente escalable y legible de forma intuitiva de la arquitectura de un sistema. La figura l.3.a muestra un modelo DSM simple de un sistema con ocho elementos, junto con su representación gráfica dirigida equivalente (dígrafo) en la figura 1.3.b.

Fuente: (Eppinger & Browning, 2012, pág. 4).

En comparación con otros métodos de modelado de redes, el principal beneficio de DSM es la naturaleza gráfica del formato de visualización de la matriz. La matriz proporciona una representación muy compacta, fácilmente escalable y legible de forma intuitiva de la arquitectura de un sistema. La figura l.3.a muestra un modelo DSM simple de un sistema con ocho elementos, junto con su representación equivalente como grafo dirigido (dígrafo) en la figura 1.3.b. En los estudios iniciales de DSM, a muchos les resulta fácil pensar que las celdas a lo largo de la diagonal de la matriz representan los elementos del sistema, análogos a los nodos en el modelo de dígrafo; sin embargo, es necesario mencionar que, para mantener el diagrama de matriz compacto, los nombres completos de los elementos a menudo se enumeran a la izquierda de las filas (y a veces también encima de las columnas) en lugar de en las celdas diagonales. También es fácil pensar que cada celda sobre la diagonal principal de la matriz puede tener entradas que ingresan desde sus lados izquierdo y derecho y salidas que salen desde arriba y abajo. Las fuentes y destinos de estas interacciones de entrada y salida se identifican mediante marcas en las celdas fuera de la diagonal (en la figura anterior expresadas con una letra X) análogas a los arcos direccionales en el modelo de dígrafo. Examinar cualquier fila de la matriz revela todas las entradas del elemento en esa fila (que son salidas de otros elementos).

Si se observa hacia abajo, cualquier columna de la matriz muestra todas las salidas del elemento en esa columna (que se convierten en entradas para otros elementos). En el ejemplo simple de DSM que se muestra en la figura 1.3.a, los ocho elementos del sistema están etiquetados de la A a la H, y hemos etiquetado tanto las filas como las columnas de la A a la H en consecuencia. Al leer la fila D, por ejemplo, vemos que el elemento D tiene entradas de los elementos A, B y F, representados por las marcas X en la fila D, columnas A, B y F. Al leer la columna F, vemos ese elemento F tiene salidas que van a los elementos B y D. Por lo tanto, la marca en la celda fuera de la diagonal [D, F] representa una interacción que es tanto una entrada como una salida dependiendo de si se toma la perspectiva de su proveedor (columna F) o su receptor (fila D). Es importante notar que muchos recursos de DSM usan la convención opuesta, la transposición de la matriz, con las entradas de un elemento mostradas en su columna y sus salidas mostradas en su fila. Las dos convenciones transmiten la misma información, y ambas se utilizan ampliamente debido a las diversas raíces de las herramientas basadas en matrices para los sistemas de modelado.

En este sentido, como se verifica en (IBM, 2021), en diversos escenarios aplicados puede existir más de una función discriminante[1], como se muestra a continuación.

Fuente: (IBM, 2021).

En general, como se verifica en (Zhao & Maclean, 2000, pág. 841), el análisis discriminante canónico (CDA, por nombre en inglés) es una técnica multivariante que se puede utilizar para determinar las relaciones entre una variable categórica y un grupo de variables independientes. Uno de los propósitos principales de CDA es separar clases (poblaciones) en un espacio discriminante de menor dimensión. En este contexto es que cuando existe más de una función discriminante (cada una de estas puede verse como un modelo de regresión lineal), un asterisco (*) como en este caso (para el caso del programa SaaS) u otro símbolo denotará la mayor correlación absoluta de cada variable con una de las funciones canónicas. Dentro de cada función, estas variables marcadas se ordenan por el tamaño de la correlación. Para el caso de la tabla presentada en la figura anterior, su lectura debe realizarse de la siguiente manera:

  1. “Nivel educativo” está más fuertemente correlacionado con la primera función y es la única variable más fuertemente correlacionada con esta función.
  2. Años con empresa actual, “Edad” en años, “Ingresos del hogar” en miles, “Años” en la dirección actual, “Retirado” y “Sexo” están más fuertemente correlacionados con la segunda función, aunque “Sexo” y “Jubilación” están más débilmente correlacionados que los otros. Las demás variables marcan esta función como función de “estabilidad”.
  3. “Número de personas en el hogar” y “Estado civil” están más fuertemente correlacionados con la tercera función discriminante, pero esta es una función sin utilidad, así que estos predictores son prácticamente inútiles.

REFERENCIAS

de la Fuente Fernández, S. (s.f.). Análisis Discriminante. Obtenido de Universidad Autónoma de Madrid: https://www.estadistica.net/Master-Econometria/Analisis_Discriminante.pdf

Eppinger, S. D., & Browning, T. R. (2012). Design Structure Matrix Methods and Applications. Cambridge, Massachusetts: MIT Press.

IBM. (2021). Análisis discriminante. Obtenido de SPSS Statistics: https://www.ibm.com/docs/es/spss-statistics/version-missing?topic=features-discriminant-analysis

IBM. (2021). Matriz de estructura. Obtenido de SaaS: https://www.ibm.com/docs/es/spss-modeler/SaaS?topic=customers-structure-matrix

Wikipedia. (23 de Junio de 2021). Linear classifier. Obtenido de Statistical classification: https://en.wikipedia.org/wiki/Linear_classifier

Zhao, G., & Maclean, A. L. (2000). A Comparison of Canonical Discriminant Analysis and Principal Component Analysis for Spectral Transformation. Photogrammetric Engineering & Remote Sensing, 841-847. Obtenido de https://www.asprs.org/wp-content/uploads/pers/2000journal/july/2000_jul_841-847.pdf

[1] Como se verifica en (de la Fuente Fernández, pág. 1), un discriminante es cada una de las variables independientes con las que se cuenta. Además, como se verifica en (IBM, 2021), una función discriminante es aquella que, mediante las diferentes combinaciones lineales de las variables predictoras, busca realizar la mejor discriminación posible entre los grupos. No debe olvidarse que, como se señala en (Wikipedia, 2021), En el campo del aprendizaje automático, el objetivo de la clasificación estadística es utilizar las características de un objeto para identificar a qué clase (o grupo) pertenece.

SOBRE LA INICIATIVA INTERNACIONAL DE PROMOCIÓN DE POLÍTICA ECONÓMICA (IIPE 2021), EL IMPERIALISMO, CHINA Y LAS FINANZAS INTERNACIONALES

BREVE INTRODUCCIÓN

Este día se publicó una investigación en el sitio web de Michael Roberts que versa, en general, sobre el papel del desarrollo tecnológico en el comercio internacional como mecanismo de acumulación de capital característico de la economía capitalista planetaria en su fase imperialista. Sobre dicha investigación se elabora la presente publicación, la cual está compuesta por tres secciones. En la primera sección se realiza un breve abordaje histórico sobre aspectos teóricos de interés abordados por Roberts en su publicación de naturaleza fundamentalmente empírica. En la segunda sección se presenta la traducción de la publicación de Roberts. Finalmente, en la tercera sección se facilita la descarga de las referencias bibliográficas presentadas por Roberts en su publicación.

I. ASPECTOS TEÓRICOS preliminares

Es importante decir que la teoría sobre el capitalismo en su fase imperialista hunde sus raíces empíricas más importantes el trabajo de Vladimir Lenin (1916) y sus raíces teóricas más importantes en el trabajo de Arghiri Emmanuel (1962). Por supuesto, el trabajo de Lenin no se limitó a ser empírico, pero fue en esta dirección la centralización de sus esfuerzos y ello conforma un punto de partida razonable para un breve análisis sobre cómo (y por qué) han evolucionado las teorías marxistas sobre el imperialismo.

Lenin fue el primer teórico del marxismo que estudió la acumulación de capital a escala planetaria considerando las relaciones centro-perisferia como una generalización económica, política, social y cultural de la lucha de clases nacional; sobre ello no existe debate relevante en el seno de la comunidad marxista. La armonía no es tal cuando se trata de abordar la obra de Arghiri Emmanuel. Cualquier persona lo suficientemente estudiosa de la historia de las ciencias sabrá que, sobre todo en ciencias sociales (con especial énfasis en economía política), la aceptación de una teoría no tiene que ver con motivos puramente académicos sino también políticos. La teoría de economía política internacional (de ahora en adelante economía geopolítica) de Emmanuel tuvo poca aceptación entre la comunidad marxista fundamentalmente no por su polémico uso de la ley del valor en el concierto internacional, sino por las conclusiones políticas que su teoría generaba. La idea central de Emmanuel es que en el concierto interncional ocurre una transformación global de valores a precios de producción como la que ocurre (salvo las particularidades naturales características del incremento en complejidad del sistema) a escala local o nacional. Es esa y no otra la idea fundamental del trabajo de Emmanuel, con independencia del grado de acuerdo (o desacuerdo) que se tenga sobre la forma en que realiza tal planteamiento. La lógica que condujo a Emmanuel a la construcción de esta idea parecería ser la misma que la que condujo a construir en la teoría matemática del caos el concepto de autosimilaridad. Esta esta lógica se puede generalizar dialécticamente como se plantea a continuación.

Los componentes (modelados mediante ecuaciones) de una totalidad (modelada mediante un sistema de ecuaciones) comparten una esencia común (i.e., que son isomórficos entre sí) que permite su combinación integrodiferencial de forma armónica y coherente bajo una determinada estructura interna de naturaleza material (objetiva), no-lineal (la totalidad es diferente a la suma de sus partes) y dinámica (el tiempo transcurre) generada por la interacción de tales componentes dadas determinadas condiciones iniciales. La estructura interna del sistema (la totalidad de referencia) condiciona a los componentes que la generan bajo el mismo conjunto de leyes (generalizadas) que rigen la interacción entre las condiciones iniciales y las relaciones entre componentes que permiten la gestación de la estructura interna de referencia. Estas leyes son: 1. Unidad y Lucha de los Contrarios (que implica emergencia y al menos autoorganización crítica), 2. Salto de lo Cuantitativo a lo Cualitativo (bifurcación), 3. Ley de la Negación de la Negación (que es una forma generalizada de la síntesis química).

AUTOSIMILARIDAD

Antes de proceder a exponer las fuentes formales y fácticas de la poca popularidad de las teorías de Emmanuel, es necesario decir un par de cuestiones relativas al papel que desempeña el tiempo en el sistema marxiano. Las escuelas de pensamiento económico marxista se pueden clasificar según su abordaje matemático del proceso histórico de transformación de valores en precios de producción; sin embargo, aún dentro de las mismas escuelas existen divergencias teóricas importantes, fundamentalmente en relación a la MELT (Monetary Expression of Labor Time) o algún equivalente de esta. Así, las escuelas de pensamiento económico marxista son la escuela temporalista, la escuela simultaneísta y alguna combinación o punto intermedio entre ellas. Todas estas diferencias filosóficas, en contraste con lo que ocurre en Filosofía de la Estadística entre, por ejemplo, frecuentistas y bayesianos subjetivos, no solo no requieren de mucha investigación para ser verificadas empíricamente, sino que además tienen como consecuencia la gestación de sistemas matemáticos que hasta la fecha (la realidad es cambiante, indudablemente) han resultado antagónicos teóricamente respecto de ese punto (en el de transformar valores en precios de producción) y numéricamente diferentes de forma sustancial en sus predicciones (aunque cualitativamente es usual que sus diferencias no sean esenciales, salvo en el punto expuesto -que es evidentemente un aspecto medular de la teoría de Marx-).

La polémica sobre el uso de la ley del valor de Emmanuel tuvo que ver con el manejo de los supuestos que realizó y, con ello, con los escenarios teóricos que identificaba con la realidad. Esta polémica se agudizó luego de que, tras las críticas recibidas (cuyo trasfondo era teórico solo formalmente o minoritariamente en su defecto), Emmanuel publicara un sistema de ecuaciones simultáneas (con ello se ganó el rechazo de los marxistas más conservadores de la época -los cuales eran reacios al uso de las matemáticas-, que no eran minoría) para abordar la transformación de valores en precios de producción) poco ortodoxo para el oficialismo de lo que se podría denominar como “marxismo matemático”, lo que en términos netos le valió para la época (1962) incompatibilidad intelectual con la generalidad de los académicos.

El debate teórico real no es, evidentemente, si el tiempo existe o no, sino si es lo suficientemente relevante para configurar el sistema matemático alrededor del mismo o si no lo es y, por consiguiente, no existen consecuencias relevantes (tanto teóricas como numéricas) por descartarlo del modelo formal del sistema capitalista. Emmanuel define en su obra el valor como cantidad cronométrica de trabajo socialmente necesario (que es la misma definición del marxismo clásico, sólo que comprimida), sin embargo, su modelo de transformación de valores en precios de producción hace uso de las ecuaciones simultáneas (lo heterodoxo del asunto radica en que establece ex ante al trabajo como la variable fundamental del sistema, para que las ecuaciones y las incógnitas se igualen automáticamente y afirmar con ello que se implica la anterioridad histórica de la fuerza de trabajo, puesto que lo precede teóricamente), aunque tampoco por ello tenga problema en afirmar que existen “dos esencias” (el capital y el trabajo) o, en otros términos, que no sólo el trabajo crea valor. ¿Cuál fue entonces el trasfondo político?

A pesar de que en tiempos modernos pueda resultar un poco difícil de pensar, alrededor de 1962 existía un relativamente pujante movimiento obrero internacional y políticamente su unidad era cardinal en la lucha contra la explotación planeataria y el modelo de Emmanuel, guste o no, implica que el bienestar de los trabajadores de los países industrializados es sufragado indirectamente por las condiciones de miseria extrema que se viven en los países de la periferia. Por supuesto, ello se implica también a nivel local, ¿quiénes permiten que los trabajadores de las ramas productivas más intensivas en capital obtengan salarios muy por encima del promedio salarial nacional sino los trabajadores de las ramas productivas intensivas en trabajo?, en un sistema de economía política los agentes económicos guardan entre sí relaciones de suma cero, es decir, la ganancia de unos implica la pérdida de otros, aunque esto no siempre ocurre (y mucho menos se observa) de forma inmediata; este hecho fundamental no cambia en un sistema de economía geopolítica. Sin embargo, aunque la topología en ambos sistemas es fundamentalmente la misma las métricas cambian y las grandes brechas sociales observadas internacionalmente (por ejemplo, entre Noruega y Haití) no se observan en términos generales (promedio) a nivel local, lo que hace más notoria la explotación, aunque no más real. Complementariamente, debe resaltarse el hecho de que, dentro de sus propias condiciones materiales de existencia, los trabajadores de los países industrializados tienen sus propias luchas sociales.

Mi máximo cariño, aprecio y admiración a toda la comunidad marxista de aquella época, puesto que al fin y al cabo lucha de clases fáctica es nuestra misión última y todos somos producto de nuestras condiciones históricas, es decir, aunque hacemos la historia, no hacemos las condiciones bajo las cuales hacemos nuestra historia.

II. IIPPE 2021: imperialism, China and finance – michael roberts

La conferencia 2021 de la Iniciativa Internacional para la Promoción de la Economía Política (IIPPE) tuvo lugar hace un par de semanas, pero solo ahora he tenido tiempo de revisar los numerosos trabajos presentados sobre una variedad de temas relacionados con la economía política. El IIPPE se ha convertido en el canal principal para que economistas marxistas y heterodoxos ‘presenten sus teorías y estudios en presentaciones. Las conferencias de materialismo histórico (HM) también hacen esto, pero los eventos de HM cubren una gama mucho más amplia de temas para los marxistas. Las sesiones de Union for Radical Political Economy en la conferencia anual de la American Economics Association se concentran en las contribuciones marxistas y heterodoxas de la economía, pero IIPPE involucra a muchos más economistas radicales de todo el mundo.

Ese fue especialmente el caso de este año porque la conferencia fue virtual en zoom y no física (¿tal vez el próximo año?). Pero todavía había muchos documentos sobre una variedad de temas guiados por varios grupos de trabajo del IIPPE. Los temas incluyeron teoría monetaria, imperialismo, China, reproducción social, financiarización, trabajo, planificación bajo el socialismo, etc. Obviamente no es posible cubrir todas las sesiones o temas; así que en esta publicación solo me referiré a las que asistí o en las que participé.

El primer tema para mí fue la naturaleza del imperialismo moderno con sesiones que fueron organizadas por el grupo de trabajo de Economía Mundial. Presenté un artículo, titulado La economía del imperialismo moderno, escrito conjuntamente por Guglielmo Carchedi y yo. En la presentación argumentamos, con evidencia, que los países imperialistas pueden definirse económicamente como aquellos que sistemáticamente obtienen ganancias netas, intereses y rentas (plusvalía) del resto del mundo a través del comercio y la inversión. Estos países son pequeños en número y población (solo 13 o más califican según nuestra definición).

Demostramos en nuestra presentación que este bloque imperialista (IC en el gráfico a continuación) obtiene algo así como 1,5% del PIB cada año del ‘intercambio desigual’ en el comercio con los países dominados (DC en el gráfico) y otro 1,5% del PIB de intereses, repatriación de utilidades y rentas de sus inversiones de capital en el exterior. Como estas economías están creciendo actualmente a no más del 2-3% anual, esta transferencia es un apoyo considerable al capital en las economías imperialistas.

https://thenextrecession.files.wordpress.com/2021/09/ii1.png

Los países imperialistas son los mismos “sospechosos habituales” que Lenin identificó en su famosa obra hace unos 100 años. Ninguna de las llamadas grandes “economías emergentes” está obteniendo ganancias netas en el comercio o las inversiones – de hecho, son perdedores netos para el bloque imperialista – y eso incluye a China. De hecho, el bloque imperialista extrae más plusvalía de China que de muchas otras economías periféricas. La razón es que China es una gran nación comercial; y también tecnológicamente atrasado en comparación con el bloque imperialista. Entonces, dados los precios del mercado internacional, pierde parte de la plusvalía creada por sus trabajadores a través del comercio hacia las economías más avanzadas. Esta es la explicación marxista clásica del “intercambio desigual” (UE).

Pero en esta sesión, esta explicación de los logros imperialistas fue discutida. John Smith ha producido algunos relatos convincentes y devastadores de la explotación del Sur Global por parte del bloque imperialista. En su opinión, la explotación imperialista no se debe a un “intercambio desigual” en los mercados entre las economías tecnológicamente avanzadas (imperialismo) y las menos avanzadas (la periferia), sino a la “superexplotación”. Los salarios de los trabajadores del Sur Global han bajado incluso de los niveles básicos de reproducción y esto permite a las empresas imperialistas extraer enormes niveles de plusvalía a través de la “cadena de valor” del comercio y los márgenes intraempresariales a nivel mundial. Smith argumentó en esta sesión que tratar de medir las transferencias de plusvalía del comercio utilizando estadísticas oficiales como el PIB de cada país era una ‘economía vulgar’ que Marx habría rechazado porque el PIB es una medida distorsionada que deja fuera una parte importante de la explotación de la economía global. Sur.

Nuestra opinión es que, incluso si el PIB no captura toda la explotación del Sur Global, nuestra medida de intercambio desigual todavía muestra una enorme transferencia de valor de las economías periféricas dependientes al núcleo imperialista. Además, nuestros datos y medidas no niegan que gran parte de esta extracción de plusvalía proviene de una mayor explotación y salarios más bajos en el Sur Global. Pero decimos que esta es una reacción de los capitalistas del Sur a su incapacidad para competir con el Norte tecnológicamente superior. Y recuerde que son principalmente los capitalistas del Sur los que están haciendo la “súper explotación”, no los capitalistas del Norte. Estos últimos obtienen una parte a través del comercio de cualquier plusvalía extra de las mayores tasas de explotación en el Sur.

De hecho, mostramos en nuestro artículo, las contribuciones relativas a la transferencia de plusvalía de tecnología superior (mayor composición orgánica del capital) y de explotación (tasa de plusvalía) en nuestras medidas. La contribución de la tecnología superior sigue siendo la principal fuente de intercambio desigual, pero la participación de diferentes tasas de plusvalía se ha elevado a casi la mitad.

https://thenextrecession.files.wordpress.com/2021/09/ii2.png

Andy Higginbottom en su presentación también rechazó la teoría marxista clásica del imperialismo del intercambio desigual presentada en el artículo Carchedi-Roberts, pero por diferentes motivos. Consideró que la igualación de las tasas de ganancia a través de las transferencias de plusvalías individuales a precios de producción se realizó de manera inadecuada en nuestro método (que seguía a Marx). Por lo tanto, nuestro método podría no ser correcto o incluso útil para empezar.

En resumen, nuestra evidencia muestra que el imperialismo es una característica inherente del capitalismo moderno. El sistema internacional del capitalismo refleja su sistema nacional (un sistema de explotación): explotación de las economías menos desarrolladas por las más desarrolladas. Los países imperialistas del siglo XX no han cambiado. No hay nuevas economías imperialistas. China no es imperialista en nuestras medidas. La transferencia de plusvalía por parte de la UE en el comercio internacional se debe principalmente a la superioridad tecnológica de las empresas del núcleo imperialista pero también a una mayor tasa de explotación en el “sur global”. La transferencia de plusvalía del bloque dominado al núcleo imperialista está aumentando en términos de dólares y como porcentaje del PIB.

En nuestra presentación, revisamos otros métodos para medir el “intercambio desigual” en lugar de nuestro método de “precios de producción”, y hay bastantes. En la conferencia, hubo otra sesión en la que Andrea Ricci actualizó (ver sección III) su invaluable trabajo sobre la medición de la transferencia de plusvalía entre la periferia y el bloque imperialista utilizando tablas mundiales de insumo-producto para los sectores comerciales y medidas en dólares PPA. Roberto Veneziani y sus colegas también presentaron un modelo de equilibrio general convencional para desarrollar un “índice de explotación” que muestra la transferencia neta de valor en el comercio de los países. Ambos estudios apoyaron los resultados de nuestro método más “temporal”.

En el estudio de Ricci hay una transferencia neta anual del 4% de la plusvalía en el PIB per cápita a América del Norte; casi el 15% per cápita para Europa occidental y cerca del 6% para Japón y Asia oriental. Por otro lado, existe una pérdida neta de PIB anual per cápita para Rusia del 17%; China 10%, América Latina 5-10% y 23% para India.

https://thenextrecession.files.wordpress.com/2021/09/ii3.png

En el estudio de Veneziani et al, “todos los países de la OCDE están en el centro, con un índice de intensidad de explotación muy por debajo de 1 (es decir, menos explotado que explotador); mientras que casi todos los países africanos son explotados, incluidos los veinte más explotados “. El estudio coloca a China en la cúspide entre explotados y explotados.

https://thenextrecession.files.wordpress.com/2021/09/ii4.png

En todas estas medidas de explotación imperialista, China no encaja a la perfección, al menos económicamente. Y esa es la conclusión a la que también se llegó en otra sesión que lanzó un nuevo libro sobre imperialismo del economista marxista australiano Sam King. El convincente libro de Sam King propone que la tesis de Lenin era correcta en sus fundamentos, a saber, que el capitalismo se había convertido en lo que Lenin llamó “capital financiero monopolista” (si bien su libro no está disponible de forma gratuita, su tesis versa fundamentalmente sobre lo mismo). El mundo se ha polarizado en países ricos y pobres sin perspectivas de que ninguna de las principales sociedades pobres llegue a formar parte de la liga de los ricos. Cien años después, ningún país que fuera pobre en 1916 se ha unido al exclusivo club imperialista (salvo con la excepción de Corea y Taiwán, que se beneficiaron específicamente de las “bendiciones de la guerra fría del imperialismo estadounidense”).

La gran esperanza de la década de 1990, promovida por la economía del desarrollo dominante de que Brasil, Rusia, India, China y Sudáfrica (BRICS) pronto se unirían a la liga de los ricos en el siglo XXI, ha demostrado ser un espejismo. Estos países siguen siendo también rans y todavía están subordinados y explotados por el núcleo imperialista. No hay economías de rango medio, a medio camino, que puedan ser consideradas como “subimperialistas” como sostienen algunos economistas marxistas. King muestra que el imperialismo está vivo y no tan bien para los pueblos del mundo. Y la brecha entre las economías imperialistas y el resto no se está reduciendo, al contrario. Y eso incluye a China, que no se unirá al club imperialista.

Hablando de China, hubo varias sesiones sobre China organizadas por el grupo de trabajo IIPPE China. Las sesiones fueron grabadas y están disponibles para verlas en el canal de YouTube de IIPPE China. La sesión cubrió el sistema estatal de China; sus políticas de inversión extranjera; el papel y la forma de planificación en China y cómo China se enfrentó a la pandemia de COVID.

También hubo una sesión sobre ¿Es capitalista China?, en la que realicé una presentación titulada ¿Cuándo se volvió capitalista China? El título es un poco irónico, porque argumenté que desde la revolución de 1949 que expulsó a los terratenientes compradores y capitalistas (que huyeron a Formosa-Taiwán), China ya no ha sido capitalista. El modo de producción capitalista no domina en la economía china incluso después de las reformas de mercado de Deng en 1978. En mi opinión, China es una “economía de transición” como lo era la Unión Soviética, o lo son ahora Corea del Norte y Cuba.

En mi presentación defino qué es una economía de transición, como la vieron Marx y Engels. China no cumple con todos los criterios: en particular, no hay democracia obrera, no hay igualación o restricciones en los ingresos; y el gran sector capitalista no está disminuyendo constantemente. Pero, por otro lado, los capitalistas no controlan la maquinaria estatal, sino los funcionarios del Partido Comunista; la ley del valor (beneficio) y los mercados no dominan la inversión, sí lo hace el gran sector estatal; y ese sector (y el sector capitalista) tienen la obligación de cumplir con los objetivos de planificación nacional (a expensas de la rentabilidad, si es necesario).

Si China fuera simplemente otra economía capitalista, ¿cómo explicamos su fenomenal éxito en el crecimiento económico, sacando a 850 millones de chinos de la línea de pobreza ?; y evitar las recesiones económicas que las principales economías capitalistas han sufrido de forma regular? Si ha logrado esto con una población de 1.400 millones y, sin embargo, es capitalista, entonces sugiere que puede haber una nueva etapa en la expansión capitalista basada en alguna forma estatal de capitalismo que sea mucho más exitosa que los capitalismos anteriores y ciertamente más que sus pares en India, Brasil, Rusia, Indonesia o Sudáfrica. China sería entonces una refutación de la teoría marxista de la crisis y una justificación del capitalismo. Afortunadamente, podemos atribuir el éxito de China a su sector estatal dominante para la inversión y la planificación, no a la producción capitalista con fines de lucro y al mercado.

Para mí, China se encuentra en una “transición atrapada”. No es capitalista (todavía) pero no avanza hacia el socialismo, donde el modo de producción es a través de la propiedad colectiva de los medios de producción para las necesidades sociales con consumo directo sin mercados, intercambio o dinero. China está atrapada porque todavía está atrasada tecnológicamente y está rodeada de economías imperialistas cada vez más hostiles; pero también está atrapado porque no existen organizaciones democráticas de trabajadores y los burócratas del PC deciden todo, a menudo con resultados desastrosos.

Por supuesto, esta visión de China es minoritaria. Los “expertos en China” occidentales están al unísono de que China es capitalista y una forma desagradable de capitalismo para arrancar, no como los capitalismos “democráticos liberales” del G7. Además, la mayoría de los marxistas están de acuerdo en que China es capitalista e incluso imperialista. En la sesión, Walter Daum argumentó que, incluso si la evidencia económica sugiere que China no es imperialista, políticamente China es imperialista, con sus políticas agresivas hacia los estados vecinos, sus relaciones comerciales y crediticias explotadoras con países pobres y su supresión de minorías étnicas como los uyghars en la provincia de Xinjiang. Otros presentadores, como Dic Lo y Cheng Enfu de China, no estuvieron de acuerdo con Daum, y Cheng caracterizó a China como “socialista con elementos del capitalismo de Estado”, una formulación extraña que suena confusa.

Finalmente, debo mencionar algunas otras presentaciones. Primero, sobre la controvertida cuestión de la financiarización. Los partidarios de la ‘financiarización’ argumentan que el capitalismo ha cambiado en los últimos 50 años de una economía orientada a la producción a una dominada por el sector financiero y son las visiones de este sector inestable las que causan las crisis, no los problemas de rentabilidad en el sector productivo. sectores, como argumentó Marx. Esta teoría ha dominado el pensamiento de los economistas poskeynesianos y marxistas en las últimas décadas. Pero cada vez hay más pruebas de que la teoría no solo es incorrecta teóricamente, sino también empíricamente.

Y en IIPPE, Turan Subasat y Stavros Mavroudeas presentaron aún más evidencia empírica para cuestionar la “financiarización” en su artículo titulado: La hipótesis de la financiarización: una crítica teórica y empírica. Subasat y Mavroudeas encuentran que la afirmación de que la mayoría de las empresas multinacionales más grandes son “financieras” es incorrecta. De hecho, la participación de las finanzas en los EE. UU. Y el Reino Unido no ha aumentado en los últimos 50 años; y durante los últimos 30 años, la participación del sector financiero en el PIB disminuyó en un 51,2% y la participación del sector financiero en los servicios disminuyó en un 65,9% en los países estudiados. Y no hay evidencia de que la expansión del sector financiero sea un predictor significativo del declive de la industria manufacturera, que ha sido causado por otros factores (globalización y cambio técnico).

Y hubo algunos artículos que continuaron confirmando la teoría monetaria de Marx, a saber, que las tasas de interés no están determinadas por una “ tasa de interés natural ” de la oferta y la demanda de ahorros (como argumentan los austriacos) o por la preferencia de liquidez, es decir, el acaparamiento de dinero (como afirman los keynesianos), pero están limitados e impulsados ​​por los movimientos en la rentabilidad del capital y, por lo tanto, la demanda de fondos de inversión. Nikos Stravelakis ofreció un artículo, Una reconciliación de la teoría del interés de Marx y el rompecabezas de la prima de riesgo, que mostraba que las ganancias netas corporativas están relacionadas positivamente con los depósitos bancarios y las ganancias netas a brutas están relacionadas positivamente con la tasa de depósitos de préstamos y que el 60% de las variaciones en las tasas de interés pueden explicarse por cambios en la tasa de ganancia. Y Karl Beitel mostró la estrecha conexión entre el movimiento a largo plazo de la rentabilidad en las principales economías en los últimos 100 años (cayendo) y la tasa de interés de los bonos a largo plazo (cayendo). Esto sugiere que hay un nivel máximo de tasas de interés, como argumentó Marx, determinado por la tasa de ganancia sobre el capital productivo, porque el interés proviene solo de la plusvalía.

Finalmente, algo que no estaba en IIPPE pero que agrega aún más apoyo a la ley de Marx de la tendencia a la caída de la tasa de ganancia. En el libro World in Crisis, coeditado por Carchedi y yo, muchos economistas marxistas presentaron evidencia empírica de la caída de la tasa de ganancia del capital de muchos países diferentes. Ahora podemos agregar otro. En un nuevo artículo, El crecimiento económico y la tasa de ganancia en Colombia 1967-2019, Alberto Carlos Duque de Colombia muestra la misma historia que hemos encontrado en otros lugares. El artículo encuentra que el movimiento en la tasa de ganancia está “en concordancia con las predicciones de la teoría marxista y afecta positivamente la tasa de crecimiento. Y la tasa de crecimiento del PIB se ve afectada por la tasa de ganancia y la tasa de acumulación está en una relación inversa entre estas últimas variables ”.

Por lo tanto, los resultados “son consistentes con los modelos macroeconómicos marxistas revisados en este artículo y brindan apoyo empírico a los mismos. En esos modelos, la tasa de crecimiento es un proceso impulsado por el comportamiento de la tasa de acumulación y la tasa de ganancia. Nuestros análisis econométricos brindan apoyo empírico a la afirmación marxista sobre el papel fundamental de la tasa de ganancia, y sus elementos constitutivos, en la acumulación de capital y, en consecuencia, en el crecimiento económico”.

III. OTRAS REFERENCIAS BIBLIOGRÁFICAS

UN CASO DE ESTUDIO SOBRE LAS APLICACIONES DE LOS MODELOS DE REGRESIÓN LINEAL: ANÁLISIS DE TRATAMIENTOS PARA POTABILIZACIÓN DEL AGUA MEDIANTE MODELOS LINEALES GENERALIZADOS, PARTE I

isadore nabi

REFERENCIAS

Abril Díaz, N., Bárcena Ruiz, A., Fernández Reyes, E., Galván Cejudo, A., Jorrín Novo, J., Peinado Peinado, J., . . . Túñez Fiñana, I. (6 de Julio de 2021). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. Obtenido de Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba: https://www.uco.es/dptos/bioquimica-biol-mol/pdfs/08_ESPECTROFOTOMETRIA.pdf

Asociación Española de Fabricantes de Agronutrientes. (26 de Enero de 2021). Clasificación del pH. Obtenido de Glosario de términos útiles en Agronutrición: https://aefa-agronutrientes.org/glosario-de-terminos-utiles-en-agronutricion/clasificacion-del-ph

Atil Husni, I., Nyoman Budiantara, I., & Zain, I. (2018). Partial hypothesis testing of truncated spline model in nonparametric regression. College Park, Maryland: American Institute of Physics Conference Proceedings. Obtenido de https://aip.scitation.org/doi/pdf/10.1063/1.5062798

Bermúdez Cabrera, X., Fleites Ramírez, M., & Contreras Moya, A. M. (Septiembre-diciembre de 2009). ESTUDIO DEL PROCESO DE COAGULACIÓN-FLOCULACIÓN DE AGUAS RESIDUALES DE LA EMPRESA TEXTIL “DESEMBARCO DEL GRANMA” A ESCALA DE LABORATORIO. Revista de Tecnología Química, XXIX(3), 64-73. Obtenido de https://www.redalyc.org/pdf/4455/445543760009.pdf

Cepeda, Z., & Cepeda C., E. (2005). Application of Generalized Linear Models to Data Analysis in Drinking Water Treatment. Revista Colombiana de Estad ́ıstica, XXVIII(2), 233-242.

Domènech, X., & Peral, J. (2006). Química Ambiental de sistemas terrestres. (S. REVERTÉ, Ed.) Barcelona.

Li, M., Duan, N., Zhang, D., Li, C.-H., & Ming, Z. (2009). Collaborative Decoding: Partial Hypothesis Re-ranking Using Translation Consensus between Decoders. Suntec, Singapore: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Obtenido de https://aclanthology.org/P09-1066.pdf

Nabi, I. (27 de Agosto de 2021). Modelos Lineales Generalizados. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/08/modelos-lineales-generalizados-isadore-nabi.pdf

Nabi, I. (21 de Septiembre de 2021). Supuestos del Modelo Clásico de Regresión Lineal y de los Modelos Lineales Generalizados. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/09/24/supuestos-del-modelo-clasico-de-regresion-lineal-y-de-los-modelos-lineales-generalizados/

Organización Mundial de la Salud. (Mayo de 2009). Tratamiento de emergencia del agua potable en el lugar de consumo. Obtenido de http://bvsper.paho.org/share/ETRAS/AyS/texcom/desastres/opsguia5.pdf

Pérez de la Cruz, F. J., & Urrea Mallebrera, M. A. (21 de Enero de 2021). ABASTECIMIENTO DE AGUAS. Coagulación y floculación. Obtenido de Universidad Politécnica de Cartagena: https://ocw.bib.upct.es/pluginfile.php/6019/mod_resource/content/1/Tema_06_COAGULACION_Y_FLOCULACION.pdf

Rahim, F., Budiantara, N., & Permatasari, E. O. (Marzo de 2019). Spline Truncated Nonparametric Regression Modeling for Maternal Mortality Rate in East Java. Jurnal Penelitian Sosial Keagamaan, II(1), 39-44. Obtenido de https://media.neliti.com/media/publications/323488-spline-truncated-nonparametric-regressio-fae11742.pdf

SUPUESTOS DEL MODELO CLÁSICO DE REGRESIÓN LINEAL Y DE LOS MODELOS LINEALES GENERALIZADOS

isadore nabi

REFERENCIAS

Banerjee, A. (29 de Octubre de 2019). Intuition behind model fitting: Overfitting v/s Underfitting. Obtenido de Towards Data Science: https://towardsdatascience.com/intuition-behind-model-fitting-overfitting-v-s-underfitting-d308c21655c7

Bhuptani, R. (13 de Julio de 2020). Quora. Obtenido de What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Cross Validated. (23 de Marzo de 2018). Will log transformation always mitigate heteroskedasticity? Obtenido de StackExchange: https://stats.stackexchange.com/questions/336315/will-log-transformation-always-mitigate-heteroskedasticity

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Guanga, A. (11 de Octubre de 2018). Machine Learning: Bias VS. Variance. Obtenido de Becoming Human: Artificial Intelligence Magazine: https://becominghuman.ai/machine-learning-bias-vs-variance-641f924e6c57

Gujarati, D., & Porter, D. (8 de Julio de 2010). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Obtenido de Homocedasticidad.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

MIT Computer Science & Artificial Intelligence Lab. (6 de Mayo de 2021). Solving over- and under-determined sets of equations. Obtenido de Articles: http://people.csail.mit.edu/bkph/articles/Pseudo_Inverse.pdf

Nabi, I. (27 de Agosto de 2021). MODELOS LINEALES GENERALIZADOS. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/08/modelos-lineales-generalizados-isadore-nabi.pdf

Penn State University, Eberly College of Science. (2018). 10.4 – Multicollinearity. Obtenido de Lesson 10: Regression Pitfalls: https://online.stat.psu.edu/stat462/node/177/

Penn State University, Eberly College of Science. (24 de Mayo de 2021). Introduction to Generalized Linear Models. Obtenido de Analysis of Discrete Data: https://online.stat.psu.edu/stat504/lesson/6/6.1

Perezgonzalez, J. D. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. frontiers in PSYCHOLOGY, VI(223), 1-11.

ResearchGate. (10 de Noviembre de 2014). How it can be possible to fit the four-parameter Fedlund model by only 3 PSD points? Obtenido de https://www.researchgate.net/post/How_it_can_be_possible_to_fit_the_four-parameter_Fedlund_model_by_only_3_PSD_points

ResearchGate. (28 de Septiembre de 2019). s there a rule for how many parameters I can fit to a model, depending on the number of data points I use for the fitting? Obtenido de https://www.researchgate.net/post/Is-there-a-rule-for-how-many-parameters-I-can-fit-to-a-model-depending-on-the-number-of-data-points-I-use-for-the-fitting

Salmerón Gómez, R., Blanco Izquierdo, V., & García García, C. (2016). Micronumerosidad aproximada y regresión lineal múltiple. Anales de ASEPUMA(24), 1-17. Obtenido de https://dialnet.unirioja.es/descarga/articulo/6004585.pdf

Simon Fraser University. (30 de Septiembre de 2011). THE CLASSICAL MODEL. Obtenido de http://www.sfu.ca/~dsignori/buec333/lecture%2010.pdf

StackExchange Cross Validated. (2 de Febrero de 2017). “Least Squares” and “Linear Regression”, are they synonyms? Obtenido de What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

Wikipedia. (18 de Marzo de 2021). Overdetermined system. Obtenido de Partial Differential Equations: https://en.wikipedia.org/wiki/Overdetermined_system

Zhao, J. (9 de Noviembre de 2017). More features than data points in linear regression? Obtenido de Medium: https://medium.com/@jennifer.zzz/more-features-than-data-points-in-linear-regression-5bcabba6883e

¿QUÉ ES UNA CORRELACIÓN ESPURIA?: EL CASO DE LOS DELITOS Y EL COLOR DE PIEL

Isadore nabi

Como señala (Gujarati & Porter, 2010, pág. 19) “A pesar de que el análisis de regresión tiene que ver con la dependencia de una variable respecto de otras variables, esto no implica causalidad necesariamente. En palabras de Kendall y Stuart: “Una relación estadística, por más fuerte que y sugerente que sea, nunca podrá establecer una conexión causal nuestras ideas de causalidad deben provenir de estadísticas externas y, en último término, de una u otra teoría.” (…) M. G. Kendall y A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers, Nueva York, 1961, vol. 2, cap. 26, p. 279.”

Profundizando en ello, (Ritchey, 2002, pág. 522) señala que “La existencia de una correlación tan solo denota que las puntuaciones de las dos variables varían de manera conjunta y sistemática en un patrón predecible. Este descubrimiento por sí mismo no establece causalidad entre las variables. Muchas correlaciones son espurias. Una correlación espuria es aquella que es conceptualmente falsa, sin sentido o teóricamente sin sentido, lo cual se ilustra por la correlación entre (…) la tasa de delito en los barrios de la ciudad y la composición racial de una comunidad. Existe una correlación positiva entre el porcentaje de la población minoritaria (por ejemplo, afroamericanos) que viven en barrios y las tasas de crimen. Es decir, para una muestra de comunidades, aquellas con un alto porcentaje de afroamericanos tienden a presentar altas tasas de delito. No obstante, ello sugiere que los afroamericanos son más propensos al comportamiento delictivo, y, de hecho, los racistas a menudo citan tal estadística. Esta correlación, sin embargo, resulta espuria. Las tasas de delito son altas en los barrios pobres sin tener en cuenta su composición racial, y una parte desproporcionada de los barrios minoritarios son pobres. Es más, la relación entre pobreza y composición racial se debe al racismo, no a la raza biológica Es decir, ser pobre no tiene nada que ver con la genética. Es la herencia racista de Estados Unidos la que contribuye al hecho de que una parte desproporcionada de los afroamericanos vivan en pobreza, lo cual, a su vez, es un buen predictor de las tasas de delito.”

A la explicación anterior hay que añadir que no es el racismo en sí mismo el que genera un nexo entre pobreza y composición racial (al menos no entendido como actitud ideológica frente a las personas afro-descendientes), sino que es la exclusión económica y financiera a la que en general se enfrentan los miembros de la sociedad desprovistos de medios de producción, la cual a su vez se agudiza particularmente con los afro-descendientes dadas las condiciones históricas de esclavitud formal, informal y de marginación social en general a la que los distintos imperios que han existido a lo largo de los diversos modos de producción social han sometido a los pueblos africanos desde los tiempos de la antigua Grecia hasta nuestros días. Merece la pena mencionar, en el contexto del movimiento Black Lives Matters, que existen dificultades no triviales para delimitar a qué nos referimos con “afro-descendientes”, tomando en cuenta que en 1987 los investigadores Rebecca Cann, Stoneking y Wilson demostraron que el Homo sapiens se originó en África calculamos entre 140,000 y 290,000 años atrás y migró de allí al resto del mundo, sustituyendo a los humanos arcaico; véase (Cann, Stoneking, & Wilson, 1987). Sin embargo, para fines de este análisis tómese de punto de partida la época en que las comunidades primitivas ya estaban bien definidas.

FUNDAMENTOS GENERALES DE LA PROGRAMACIÓN EN R STUDIO: UN ENFOQUE ESTADÍSTICO-MATEMÁTICO

ISADORE NABI

INTRODUCCIÓN A LOS ENSAYOS CLÍNICOS DESDE LA TEORÍA ESTADÍSTICA Y RSTUDIO: ASOCIACIÓN Y CORRELACIÓN DE PEARSON, SPEARMAN Y KENDALL

isadore NABI

### DISTRIBUCIÓN CHI-CUADRADO

###ORÍGENES HISTÓRICOS Y GENERALIDADES: https://marxianstatistics.com/2021/09/10/generalidades-sobre-la-prueba-chi-cuadrado/

###En su forma general, la distribución Chi-Cuadrado es una suma de los cuadrados de variables aleatorias N(media=0, varianza=1), véase https://mathworld.wolfram.com/Chi-SquaredDistribution.html.

###Se utiliza para describir la distribución de una suma de variables aleatorias al cuadrado. También se utiliza para probar la bondad de ajuste de una distribución de datos, si las series de datos son independientes y para estimar las confianzas que rodean la varianza y la desviación estándar de una variable aleatoria de una distribución normal.

### COEFICIENTES DE CORRELACIÓN

###Coeficiente de Correlación de Pearson (prueba paramétrica): https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php, https://www.wikiwand.com/en/Pearson_correlation_coefficient.

###Coeficiente de Correlación de Spearman (prueba no-paramétrica): https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php, https://www.wikiwand.com/en/Spearman%27s_rank_correlation_coefficient, https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf.

###Coeficiente de Correlación de Kendall (prueba no-paramétrica): https://www.statisticshowto.com/kendalls-tau/, https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535, https://personal.utdallas.edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf, https://www.wikiwand.com/en/Kendall_rank_correlation_coefficient.

####Como se verifica en su forma más general [véase Jeremy M. G. Taylor, Kendall’s and Spearman’s Correlation Coefficient in the Presence of a Blocking Variable, (Biometrics, Vol. 43, No. 2 (Jun., 1987), pp.409-416), p. 409], en presencia de “empates”, conocidos también como “observaciones vinculadas” (del inglés “ties”, que, como se verifica en http://www.statistics4u.com/fundstat_eng/dd_ties.html, significa en el contexto de las estadísticas de clasificación de orden -rank order statistics- la existencia de dos o más observaciones que tienen el mismo valor, por lo que imposibilita la asignación de números de rango únicos), es preferible utilizar el coeficiente de correlación de Spearman rho porque su varianza posee una forma más simple (relacionado con el costo computacional, puesto que la investigación de Jeremy Taylor emplea como herramienta de estadística experimental la metodología Monte Carlo, lo que puede verificarse en https://pdodds.w3.uvm.edu/files/papers/others/1987/taylor1987a.pdf).

### RIESGO RELATIVO

####Como se verifica en https://www.wikiwand.com/en/Odds_ratio, el riesgo relativo (diferente a la razón éxito/fracaso y a la razón de momios) es la proporción de éxito de un evento (o de fracaso) en términos del total de ocurrencias (éxitos más fracasos).

### RAZÓN ÉXITO/FRACASO

####Es el cociente entre el número de veces que ocurre un evento y el número de veces en que no ocurre.

####INTERPRETACIÓN: Para interpretar la razón de ataque/no ataque de forma más intuitiva se debe multiplicar dicha razón Ψ (psi) por el número de decenas necesarias Ξ (Xi) para que la razón tenga un dígito d^*∈N a la izquierda del “punto decimal” (en este caso de aplicación hipotético Ξ=1000), resultando así un escalar real υ=Ψ*Ξ (donde υ es la letra griega ípsilon) con parte entera que se interpreta como “Por cada Ξ elementos de la población de referencia bajo la condición especificada (en este caso, que tomó aspirina o que tomó un placebo) estará presente la característica (u ocurrirá el evento, según sea el caso) en (d^*+h) ocasiones, en donde h es el infinitesimal a la derecha del punto decimal (llamado así porque separa no sólo los enteros de los infinitesimales, sino que a su derecha se encuentra la casilla correspondiente justamente a algún número decimal).

### RAZÓN DE MOMIOS

####DEFÍNICIÓN: Es una medida utilizada en estudios epidemiológicos transversales y de casos y controles, así como en los metaanálisis. En términos formales, se define como la posibilidad que una condición de salud o enfermedad se presente en un grupo de población frente al riesgo que ocurra en otro. En epidemiología, la comparación suele realizarse entre grupos humanos que presentan condiciones de vida similares, con la diferencia que uno se encuentra expuesto a un factor de riesgo (mi) mientras que el otro carece de esta característica (mo). Por lo tanto, la razón de momios o de posibilidades es una medida de tamaño de efecto.

####Nótese que es un concepto, evidentemente, de naturaleza frecuentista.

####La razón de momios es el cociente entre las razones de ocurrencia/no-ocurrencia de los tratamientos experimentales estudiados (una razón por cada uno de los dos tratamientos experimentales sujetos de comparación).

### TAMAÑO DEL EFECTO

####Defínase tamaño del efecto como cualquier medida realizada sobre algún conjunto de características (que puede ser de un elemento) relativas a cualquier fenómeno, que es utilizada para abordar una pregunta de interés, según (Kelly y Preacher 2012, 140). Tal y como ellos señalan, la definición es más que una combinación de “efecto” y “tamaño” porque depende explícitamente de la pregunta de investigación que se aborde. Ello significa que lo que separa a un tamaño de efecto de un estadístico de prueba (o estimador) es la orientación de su uso, si responde una pregunta de investigación en específico entonces el estadístico (o parámetro) se convierte en un “tamaño de efecto” y si sólo es parte de un proceso global de predicción entonces es un estadístico (o parámetro) a secas, i.e., su distinción o, expresado en otros términos, la identificación de cuándo un estadístico (o parámetro) se convierte en un tamaño de efecto, es una cuestión puramente epistemológica, no matemática. Lo anterior simplemente implica que, dependiendo del tipo de pregunta que se desee responder el investigador, un estadístico (o parámetro) será un tamaño de efecto o simplemente un estadístico (o parámetro) sin más.

setwd(“C:/Users/User/Desktop/Carpeta de Estudio/Maestría Profesional en Estadística/Semestre II-2021/Métodos, Regresión y Diseño de Experimentos/2/Laboratorios/Laboratorio 2”)

## ESTIMAR EL COEFICIENTE DE CORRELACIÓN DE PEARSON ENTRE TEMPERATURA Y PORCENTAJE DE CONVERSIÓN

###CÁLCULO MANUAL DE LA COVARIANZA

prom.temp = mean(temperatura)

prom.conversion = mean(porcentaje.conversion)

sd.temp = sd(temperatura)

sd.conversion = sd(porcentaje.conversion)

n = nrow(vinilacion)

covarianza = sum((temperatura-prom.temp)*(porcentaje.conversion-prom.conversion))/(n-1)

covarianza

###La covarianza es una medida para indicar el grado en el que dos variables aleatorias cambian en conjunto (véase https://www.mygreatlearning.com/blog/covariance-vs-correlation/#differencebetweencorrelationandcovariance).

###CÁLCULO DE LA COVARIANZA DE FORMA AUTOMATIZADA

cov(temperatura,porcentaje.conversion)

###CÁLCULO MANUAL DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

###Véase https://www.wikiwand.com/en/Pearson_correlation_coefficient (9 de septiembre de 2021).

coef.correlacion = covarianza/(sd.temp*sd.conversion)

coef.correlacion

###CÁLCULO AUTOMATIZADO DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

cor(temperatura,porcentaje.conversion) ###Salvo que se especifique lo contrario (como puede verificarse en la librería de R), el coeficiente de correlación calculado por defecto será el de Pearson, sin embargo, se puede calcular también el coeficiente de Kendall (escribiendo “kendall” en la casilla “method” de la sintaxis “cor”) o el de Spearman (escribiendo “spearman” en la casilla “method” de la sintaxis “cor”).

cor(presion,porcentaje.conversion)

###VÍNCULO, SIMILITUDES Y DIFERENCIAS ENTRE CORRELACIÓN Y COVARIANZA

###El coeficiente de correlación está íntimamente vinculado con la covarianza. La covarianza es una medida de correlación y el coeficiente de correlación es también una forma de medir la correlación (que difiere según sea de Pearson, Kendall o Spearman).

###La covarianza indica la dirección de la relación lineal entre variables, mientras que el coeficiente de correlación mide no sólo la dirección sino además la fuerza de esa relación lineal entre variables.

###La covarianza puede ir de menos infinito a más infinito, mientras que el coeficiente de correlación oscila entre -1 y 1.

###La covarianza se ve afectada por los cambios de escala: si todos los valores de una variable se multiplican por una constante y todos los valores de otra variable se multiplican por una constante similar o diferente, entonces se cambia la covarianza. La correlación no se ve influenciada por el cambio de escala.

###La covarianza asume las unidades del producto de las unidades de las dos variables. La correlación es adimensional, es decir, es una medida libre de unidades de la relación entre variables.

###La covarianza de dos variables dependientes mide cuánto en cantidad real (es decir, cm, kg, litros) en promedio covarían. La correlación de dos variables dependientes mide la proporción de cuánto varían en promedio estas variables entre sí.

###La covarianza es cero en el caso de variables independientes (si una variable se mueve y la otra no) porque entonces las variables no necesariamente se mueven juntas (por el supuesto de ortogonalidad entre los vectores, que expresa geométricamente su independencia lineal). Los movimientos independientes no contribuyen a la correlación total. Por tanto, las variables completamente independientes tienen una correlación cero.

## CREAR UNA MATRIZ DE CORRELACIONES DE PEARSON Y DE SPEARMAN

####La vinilación de los glucósidos se presenta cuando se les agrega acetileno a alta presión y alta temperatura, en presencia de una base para producir éteres de monovinil.

###Los productos de monovinil éter son útiles en varios procesos industriales de síntesis.

###Interesa determinar qué condiciones producen una conversión máxima de metil glucósidos para diversos isómeros de monovinil.

cor(vinilacion) ###Pearson

cor(vinilacion, method=”spearman”) ###Spearman

## CREAR UNA MATRIZ DE VARIANZAS Y COVARIANZAS (LOCALIZADAS ESTAS ÚLTIMAS EN LA DIAGONAL PRINCIPAL DE LA MATRIZ)

cov(vinilacion)

## GENERAR GRÁFICOS DE DISPERSIÓN

plot(temperatura,porcentaje.conversion)

plot(porcentaje.conversion~temperatura)

mod = lm(porcentaje.conversion~temperatura)

abline(mod,col=2)

###La sintaxis “lm” es usada para realizar ajuste de modelos lineales (es decir, ajustar un conjunto de datos a la curva dibujada por un modelo lineal -i.e., una línea recta-, lo cual -si es estadísticamente robusto- implica validar que el conjunto de datos en cuestión posee un patrón de comportamiento geométrico lineal).

###La sintaxis “lm” puede utilizar para el ajuste el método de los mínimos cuadrados ponderados o el método de mínimos cuadrados ordinarios, en función de si la opción “weights” se llena con un vector numérico o con “NULL”, respectivamente).

### La casilla “weights” de la sintaxis “lm” expresa las ponderaciones a utilizar para realizar el proceso de ajuste (si las ponderaciones son iguales para todas las observaciones, entonces el método de mínimos cuadrados ponderados se transforma en el método de mínimos cuadrados ordinarios). Estas ponderaciones son, en términos computacionales, aquellas que minimizan la suma ponderada de los errores al cuadrado.

###Las ponderaciones no nulas pueden user usadas para indicar diferentes varianzas (con los valores de las ponderaciones siendo inversamente proporcionales a la varianza); o, equivalentemente, cuando los elementos del vector de ponderaciones son enteros positivos w_i, en donde cada respuesta y_i es la media de las w_j unidades observacionales ponderadas (incluyendo el caso de que hay w_i observaciones iguales a y_i y los datos se han resumido).

###Sin embargo, en el último caso, observe que no se utiliza la variación dentro del grupo. Por lo tanto, la estimación sigma y los grados de libertad residuales pueden ser subóptimos; en el caso de pesos de replicación, incluso incorrecto. Por lo tanto, los errores estándar y las tablas de análisis de varianza deben tratarse con cuidado.

###La estimación sigma se refiere a la sintaxis “sigma” que estima la desviación estándar de los errores (véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/sigma.html).

###Si la variable de respuesta (o dependiente) es una matriz, un modelo lineal se ajusta por separado mediante mínimos cuadrados a cada columna de la matriz.

###Cabe mencionar que “formula” (la primera entrada de la sintaxis “lm”) tiene un término de intersección implícito (recuérdese que toda ecuación de regresión tiene un intercepto B_0, que puede ser nulo). Para eliminar dicho término, debe usarse y ~ x – 1 o y ~ 0 + x.

plot(presion~porcentaje.conversion)

mod = lm(presion~porcentaje.conversion) ###Ajuste a la recta antes mencionado y guardado bajo el nombre “mod”.

abline(mod,col=2) ###Es crear una línea color rojo (col=2) en la gráfica generada (con la función “mod”)

## REALIZAR PRUEBA DE HIPÓTESIS PARA EL COEFICIENTE DE CORRELACIÓN

###Véase https://opentextbc.ca/introstatopenstax/chapter/testing-the-significance-of-the-correlation-coefficient/, https://online.stat.psu.edu/stat501/lesson/1/1.9,

###Para estar casi seguros (en relación al concepto de convergencia) Para asegurar que existe al menos una leve correlación entre dos variables (X,Y) se tiene que probar que el coeficiente de correlación poblacional (r) no es nulo.

###Para que la prueba de hipótesis tenga validez se debe verificar que la distribución de Y para cada X es normal y que sus valores han sido seleccionados aleatoriamente.

###Si se rechaza la hipótesis nula, no se asegura que haya una correlación muy alta.

###Si el valor p es menor que el nivel de significancia se rechaza la Ho de que el coeficiente de correlación entre Y y X es cero en términos de determinado nivel de significancia estadística.

###Evaluar la significancia estadística de un coeficiente de correlación puede contribuir a validar o refutar una investigación donde este se haya utilizado (siempre que se cuenten con los datos empleados en la investigación), por ejemplo, en el uso de modelos lineales de predicción.

###Se puede utilizar la distribución t con n-2 grados de libertad para probar la hipótesis.

###Como se observará a continuación, además de la forma estándar, también es posible calcular t como la diferencia entre el coeficiente de correlación.

###Si la probabilidad asociada a la hipótesis nula es casi cero, puede afirmarse a un nivel de confianza determinado de que la correlación es altamente significativa en términos estadísticos.

###FORMA MANUAL

ee = sqrt((1-coef.correlacion^2)/(n-2))

t.calculado = (coef.correlacion-0)/ee ###Aquí parece implicarse que el valor t puede calcularse como el cociente entre el coeficiente de correlación muestral menos el coeficiente de correlación poblacional sobre el error estándar de la media.

2*(1-pt(t.calculado,n-2))

###FORMA AUTOMATIZADA

cor.test(temperatura,porcentaje.conversion) ###El valor del coeficiente de correlación que se ha estipulado (que es cero) debe encontrarse dentro del intervalo de confianza al nivel de probabilidad pertinente para aceptar Ho y, caso contrario, rechazarla.

cor.test(temperatura,presion)

###Como se señala en https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/,  calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.

qt(0.975,6)

### EJEMPLO DE APROXIMACIÓN COMPUTACIONAL DE LA DISTRIBUCIÓN t DE STUDENT A LA DISTRIBUCIÓN NORMAL

###El intervalo de confianza se calcula realizando la transformación-z de Fisher (tanto con la función automatizada de R como con la función personalizada elaborada) como a nivel teórico), la cual se utiliza porque cuando la transformación se aplica al coeficiente de correlación muestral, la distribución muestral de la variable resultante es aproximadamente normal, lo que implica que posee una varianza que es estable sobre diferentes valores de la correlación verdadera subyacente (puede ampliarse más en https://en.wikipedia.org/wiki/Fisher_transformation).

coef.correlacion+c(-1,1)*qt(0.975,6)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido como una distribución t de Student.

coef.correlacion+c(-1,1)*qnorm(0.975)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido normalmente.

## CASO DE APLICACIÓN HIPOTÉTICO

###En un estudio sobre el metabolismo de una especie salvaje, un biólogo obtuvo índices de actividad y datos sobre tasas metabólicas para 20 animales observados en cautiverio.

rm(list=ls()) ###Remover todos los objetos de la lista

actividad <- read.csv(“actividad.csv”, sep = “,”, dec=”.”, header = T)

attach(actividad)

n=nrow(actividad)

str(actividad)####”str” es para ver qué tipo de dato es cada variable.

plot(Indice.actividad,Tasa.metabolica)

###Coeficiente de Correlación de Pearson

cor(Indice.actividad,Tasa.metabolica, method=”pearson”)

###Se rechaza la hipótesis nula de que la correlación de Pearson es 0.

###Coeficiente de correlación de Spearman

(corr = cor(Indice.actividad,Tasa.metabolica, method=”spearman”))

(t.s=corr*(sqrt((n-2)/(1-(corr^2)))))

(gl=n-2)

(1-pt(t.s,gl))*2

###Se rechaza la hipótesis nula de que la correlación de Spearman es 0.

###NOTA ADICIONAL:

###Ambas oscilan entre -1 y 1. El signo negativo denota la relacion inversa entre ambas. La correlacion de Pearson mide la relación lineal entre dos variables (correlacion 0 es independencia lineal, que los vectores son ortogonales). La correlación de Pearson es para variables numérica de razón y tiene el supuesto de normalidad en la distribución de los valores de los datos. Cuando los supuestos son altamente violados, lo mejor es usar una medida de correlación no-paramétrica, específicamente el coeficiente de Spearman. Sobre el coeficiente de Spearman se puede decir lo mismo en relación a la asociación. Así, valores de 0 indican correlación 0, pero no asegura que por ser cero las variables sean independientes (no es concluyente).

### TABLAS DE CONTINGENCIA Y PRUEBA DE INDEPENDENCIA

###Una tabla de contingencia es un arreglo para representar simultáneamente las cantidades de individuos y sus porcentajes que se presentan en cada celda al cruzar dos variables categóricas.

###En algunos casos una de las variables puede funcionar como respuesta y la otra como factor, pero en otros casos sólo interesa la relación entre ambas sin intentar explicar la dirección de la relación.

###CASO DE APLICACIÓN HIPOTÉTICO

###Un estudio de ensayos clínicos trataba de probar si la ingesta regular de aspirina reduce la mortalidad por enfermedades cardiovasculares. Los participantes en el estudio tomaron una aspirina o un placebo cada dos días. El estudio se hizo de tal forma que nadie sabía qué pastilla estaba tomando. La respuesta es que si presenta o no ataque cardiaco (2 niveles),

rm(list=ls())

aspirina = read.csv(“aspirina.csv”, sep = “,”, dec=”.”, header = T)

aspirina

str(aspirina)

attach(aspirina)

names(aspirina)

str(aspirina)

View(aspirina)

#### 1. Determinar las diferencias entre la proporción a la que ocurrió un ataque dependiendo de la pastilla que consumió. Identifique el porcentaje global en que presentó ataque y el porcentaje global en que no presentó.

e=tapply(aspirina$freq,list(ataque,pastilla),sum) ###Genera la estructura de la tabla con la que se trabajará (la base de datos organizada según el diseño experimental previamente realizado).

prop.table(e,2) ###Riesgo Relativo columna. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

prop.table(e,1) ###Riesgo Relativo fila. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

(et=addmargins(e)) ###Tabla de contingencia.

addmargins(prop.table(e)) ####Distribución porcentual completa.

###Si se asume que el tipo de pastilla no influye en el hecho de tener un ataque cardíaco, entonces, debería de haber igual porcentaje de ataques en la columna de médicos que tomaron aspirina que en la de los que tomaron placebo.

###Se obtiene el valor esperado de ataques y no ataques.

### Lo anterior se realiza bajo el supuesto de que hay un 1.3% de ataques en general y un 98.7% de no ataques.

#### 2. Usando los valores observados y esperados, calcular el valor de Chi-Cuadrado para determinar si existe dependencia entre ataque y pastilla?

###Al aplicar la distribución Chi cuadrado, que es una distribución continua, para representar un fenómeno discreto, como el número de casos en cada unos de los supuestos de la tabla de 2*2, existe un ligero fallo en la aproximación a la realidad. En números grandes, esta desviación es muy escasa, y puede desecharse, pero cuando las cantidades esperadas en alguna de las celdas son números pequeños- en general se toma como límite el que tengan menos de cinco elementos- la desviación puede ser más importante. Para evitarlo, Yates propuso en 1934 una corrección de los métodos empleados para hallar el Chi cuadrado, que mejora la concordancia entre los resultados del cálculo y la distribución Chi cuadrado. En el articulo anterior, correspondiente a Chi cuadrado,  el calculador expone, además de los resultados de Chi cuadrado, y las indicaciones para decidir, con arreglo a los límites de la distribución para cada uno de los errores alfa admitidos, el rechazar o no la hipótesis nula, una exposición de las frecuencias esperadas en cada una de las casillas de la tabla de contingencia, y la advertencia de que si alguna de ellas tiene un valor inferior a 5 debería emplearse la corrección de Yates. Fuente: https://www.samiuc.es/estadisticas-variables-binarias/valoracion-inicial-pruebas-diagnosticas/chi-cuadrado-correccion-yates/.

###Como se señala en [James E. Grizzle, Continuity Correction in the χ2-Test for 2 × 2 Tables, (The American Statistician, Oct., 1967, Vol. 21, No. 4 (Oct., 1967), pp. 28-32), p. 29-30], técnicamente hablando, la corrección de Yates hace que “(…) las probabilidades obtenidas bajo la distribución χ2 bajo la hipótesis nula converjan de forma más cercana con las probabilidades obtenidas bajo el supuesto de que el conjunto de datos fue generado por una muestra proveniente de la distribución hipergeométrica, i.e., generados bajo el supuesto que los dos márgenes de la tabla fueron fijados con antelación al muestreo.”

###Grizzle se refiere con “márgenes” a los totales de la tabla (véase https://www.tutorialspoint.com/how-to-create-a-contingency-table-with-sum-on-the-margins-from-an-r-data-frame). Además, la lógica de ello subyace en la misma definición matemática de la distribución hipergeométrica. Como se puede verificar en RStudio mediante la sintaxis “?rhyper”, la distribución hipergeométrica tiene la estructura matemática (distribución de probabilidad) p(x) = choose(m, x) choose(n, k-x)/choose(m+n, k), en donde m es el número de éxitos, n es el número de fracasos lo que ) y k es el tamaño de la muestra (tanto m, n y k son parámetros en función del conjunto de datos, evidentemente), con los primeros dos momentos definidos por E[X] = μ = k*p y la varianza se define como Var(X) = k p (1 – p) * (m+n-k)/(m+n-1). De lo anterior se deriva naturalmente que para realizar el análisis estocástico del fenómeno modelado con la distribución hipergeométrica es necesario conocer la cantidad de sujetos que representan los éxitos y los fracasos del experimento (en donde “éxito” y “fracaso” se define en función del planteamiento del experimento, lo cual a su vez obedece a múltiples factores) y ello implica que se debe conocer el total de los sujetos experimentales estudiados junto con su desglose en los términos binarios ya especificados.

###Lo mismo señalado por Grizzle se verifica (citando a Grizzle) en (Biometry, The Principles and Practice of Statistics in Biological Research, Robert E. Sokal & F. James Rohlf, Third Edition, p. 737), especificando que se vuelve innecesaria la corrección de Yates aún para muestras de 20 observaciones.

###Adicionalmente, merece mención el hecho que, como es sabido, la distribución binomial se utiliza con frecuencia para modelar el número de éxitos en una muestra de tamaño n extraída con reemplazo de una población de tamaño N. Sin embargo, si el muestreo se realiza sin reemplazo, las muestras extraídas no son independientes y, por lo tanto, la distribución resultante es una hipergeométrica; sin embargo, para N mucho más grande que n, la distribución binomial sigue siendo una buena aproximación y se usa ampliamente (véase https://www.wikiwand.com/en/Binomial_distribution).

###Grados de libertad correspondientes: número de filas menos 1 por número de columnas menos 1.

###Ho = Hay independencia entre el ataque y las pastillas.

(tabla.freq<-xtabs(freq~ataque+pastilla, data=aspirina))

###La tabla de frecuencias contiene tanto las frecuencias observadas como las esperadas.

###La frecuencia esperada es el conteo de observaciones que se espera en una celda, en promedio, si las variables son independientes.

###La frecuencia esperada de una variable se calcula como el producto entre el cociente [(Total de la Columna j)/(Total de Totales)]*(Total Fila i).

###PRUEBA CHI-CUADRADO AUTOMATIZADA

(prueba.chi<-chisq.test(tabla.freq,correct=F) ) ###La sintaxis “chisq.test” sirve para realizar la prueba de Chi-Cuadrado en tablas de contingencia y para realizar pruebas de bondad de ajuste.

names(prueba.chi)

###PRUEBA CHI-CUADRADO PASO A PASO

(esperado<-prueba.chi$expected) ###valores esperados

(observado<-prueba.chi$observed) ###valores observados

(cuadrados<-(esperado-observado)^2/esperado)

(chi<-sum(cuadrados))

1-pchisq(chi,1) ###Valor de p de la distribución Chi-Cuadrado (especificada mediante el conjunto de datos) calculado de forma no-automatizada.

###Si el valor p es mayor que el nivel de significancia se falla en rechazar Ho, si es menor se rechaza Ho.

###Se rechaza Ho con un nivel de significancia alfa de 0.05. Puesto que se tiene una probabilidad muy baja de cometer error tipo I, i.e., rechazar la hipótesis nula siendo falsa.

GENERALIDADES Y ORÍGENES HISTÓRICOS DE LA DISTRIBUCIÓN CHI-CUADRADO

ISADORE NABI