UN CASO DE ESTUDIO SOBRE LAS APLICACIONES DE LOS MODELOS DE REGRESIÓN LINEAL: ANÁLISIS DE TRATAMIENTOS PARA POTABILIZACIÓN DEL AGUA MEDIANTE MODELOS LINEALES GENERALIZADOS, PARTE I

isadore nabi

REFERENCIAS

Abril Díaz, N., Bárcena Ruiz, A., Fernández Reyes, E., Galván Cejudo, A., Jorrín Novo, J., Peinado Peinado, J., . . . Túñez Fiñana, I. (6 de Julio de 2021). Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas. Obtenido de Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba: https://www.uco.es/dptos/bioquimica-biol-mol/pdfs/08_ESPECTROFOTOMETRIA.pdf

Asociación Española de Fabricantes de Agronutrientes. (26 de Enero de 2021). Clasificación del pH. Obtenido de Glosario de términos útiles en Agronutrición: https://aefa-agronutrientes.org/glosario-de-terminos-utiles-en-agronutricion/clasificacion-del-ph

Atil Husni, I., Nyoman Budiantara, I., & Zain, I. (2018). Partial hypothesis testing of truncated spline model in nonparametric regression. College Park, Maryland: American Institute of Physics Conference Proceedings. Obtenido de https://aip.scitation.org/doi/pdf/10.1063/1.5062798

Bermúdez Cabrera, X., Fleites Ramírez, M., & Contreras Moya, A. M. (Septiembre-diciembre de 2009). ESTUDIO DEL PROCESO DE COAGULACIÓN-FLOCULACIÓN DE AGUAS RESIDUALES DE LA EMPRESA TEXTIL “DESEMBARCO DEL GRANMA” A ESCALA DE LABORATORIO. Revista de Tecnología Química, XXIX(3), 64-73. Obtenido de https://www.redalyc.org/pdf/4455/445543760009.pdf

Cepeda, Z., & Cepeda C., E. (2005). Application of Generalized Linear Models to Data Analysis in Drinking Water Treatment. Revista Colombiana de Estad ́ıstica, XXVIII(2), 233-242.

Domènech, X., & Peral, J. (2006). Química Ambiental de sistemas terrestres. (S. REVERTÉ, Ed.) Barcelona.

Li, M., Duan, N., Zhang, D., Li, C.-H., & Ming, Z. (2009). Collaborative Decoding: Partial Hypothesis Re-ranking Using Translation Consensus between Decoders. Suntec, Singapore: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Obtenido de https://aclanthology.org/P09-1066.pdf

Nabi, I. (27 de Agosto de 2021). Modelos Lineales Generalizados. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/08/modelos-lineales-generalizados-isadore-nabi.pdf

Nabi, I. (21 de Septiembre de 2021). Supuestos del Modelo Clásico de Regresión Lineal y de los Modelos Lineales Generalizados. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/09/24/supuestos-del-modelo-clasico-de-regresion-lineal-y-de-los-modelos-lineales-generalizados/

Organización Mundial de la Salud. (Mayo de 2009). Tratamiento de emergencia del agua potable en el lugar de consumo. Obtenido de http://bvsper.paho.org/share/ETRAS/AyS/texcom/desastres/opsguia5.pdf

Pérez de la Cruz, F. J., & Urrea Mallebrera, M. A. (21 de Enero de 2021). ABASTECIMIENTO DE AGUAS. Coagulación y floculación. Obtenido de Universidad Politécnica de Cartagena: https://ocw.bib.upct.es/pluginfile.php/6019/mod_resource/content/1/Tema_06_COAGULACION_Y_FLOCULACION.pdf

Rahim, F., Budiantara, N., & Permatasari, E. O. (Marzo de 2019). Spline Truncated Nonparametric Regression Modeling for Maternal Mortality Rate in East Java. Jurnal Penelitian Sosial Keagamaan, II(1), 39-44. Obtenido de https://media.neliti.com/media/publications/323488-spline-truncated-nonparametric-regressio-fae11742.pdf

¿QUÉ ES UNA CORRELACIÓN ESPURIA?: EL CASO DE LOS DELITOS Y EL COLOR DE PIEL

Isadore nabi

Como señala (Gujarati & Porter, 2010, pág. 19) “A pesar de que el análisis de regresión tiene que ver con la dependencia de una variable respecto de otras variables, esto no implica causalidad necesariamente. En palabras de Kendall y Stuart: “Una relación estadística, por más fuerte que y sugerente que sea, nunca podrá establecer una conexión causal nuestras ideas de causalidad deben provenir de estadísticas externas y, en último término, de una u otra teoría.” (…) M. G. Kendall y A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers, Nueva York, 1961, vol. 2, cap. 26, p. 279.”

Profundizando en ello, (Ritchey, 2002, pág. 522) señala que “La existencia de una correlación tan solo denota que las puntuaciones de las dos variables varían de manera conjunta y sistemática en un patrón predecible. Este descubrimiento por sí mismo no establece causalidad entre las variables. Muchas correlaciones son espurias. Una correlación espuria es aquella que es conceptualmente falsa, sin sentido o teóricamente sin sentido, lo cual se ilustra por la correlación entre (…) la tasa de delito en los barrios de la ciudad y la composición racial de una comunidad. Existe una correlación positiva entre el porcentaje de la población minoritaria (por ejemplo, afroamericanos) que viven en barrios y las tasas de crimen. Es decir, para una muestra de comunidades, aquellas con un alto porcentaje de afroamericanos tienden a presentar altas tasas de delito. No obstante, ello sugiere que los afroamericanos son más propensos al comportamiento delictivo, y, de hecho, los racistas a menudo citan tal estadística. Esta correlación, sin embargo, resulta espuria. Las tasas de delito son altas en los barrios pobres sin tener en cuenta su composición racial, y una parte desproporcionada de los barrios minoritarios son pobres. Es más, la relación entre pobreza y composición racial se debe al racismo, no a la raza biológica Es decir, ser pobre no tiene nada que ver con la genética. Es la herencia racista de Estados Unidos la que contribuye al hecho de que una parte desproporcionada de los afroamericanos vivan en pobreza, lo cual, a su vez, es un buen predictor de las tasas de delito.”

A la explicación anterior hay que añadir que no es el racismo en sí mismo el que genera un nexo entre pobreza y composición racial (al menos no entendido como actitud ideológica frente a las personas afro-descendientes), sino que es la exclusión económica y financiera a la que en general se enfrentan los miembros de la sociedad desprovistos de medios de producción, la cual a su vez se agudiza particularmente con los afro-descendientes dadas las condiciones históricas de esclavitud formal, informal y de marginación social en general a la que los distintos imperios que han existido a lo largo de los diversos modos de producción social han sometido a los pueblos africanos desde los tiempos de la antigua Grecia hasta nuestros días. Merece la pena mencionar, en el contexto del movimiento Black Lives Matters, que existen dificultades no triviales para delimitar a qué nos referimos con “afro-descendientes”, tomando en cuenta que en 1987 los investigadores Rebecca Cann, Stoneking y Wilson demostraron que el Homo sapiens se originó en África calculamos entre 140,000 y 290,000 años atrás y migró de allí al resto del mundo, sustituyendo a los humanos arcaico; véase (Cann, Stoneking, & Wilson, 1987). Sin embargo, para fines de este análisis tómese de punto de partida la época en que las comunidades primitivas ya estaban bien definidas.

FUNDAMENTOS GENERALES DE LA PROGRAMACIÓN EN R STUDIO: UN ENFOQUE ESTADÍSTICO-MATEMÁTICO

ISADORE NABI

INTRODUCCIÓN A LOS ENSAYOS CLÍNICOS DESDE LA TEORÍA ESTADÍSTICA Y RSTUDIO: ASOCIACIÓN Y CORRELACIÓN DE PEARSON, SPEARMAN Y KENDALL

isadore NABI

### DISTRIBUCIÓN CHI-CUADRADO

###ORÍGENES HISTÓRICOS Y GENERALIDADES: https://marxianstatistics.com/2021/09/10/generalidades-sobre-la-prueba-chi-cuadrado/

###En su forma general, la distribución Chi-Cuadrado es una suma de los cuadrados de variables aleatorias N(media=0, varianza=1), véase https://mathworld.wolfram.com/Chi-SquaredDistribution.html.

###Se utiliza para describir la distribución de una suma de variables aleatorias al cuadrado. También se utiliza para probar la bondad de ajuste de una distribución de datos, si las series de datos son independientes y para estimar las confianzas que rodean la varianza y la desviación estándar de una variable aleatoria de una distribución normal.

### COEFICIENTES DE CORRELACIÓN

###Coeficiente de Correlación de Pearson (prueba paramétrica): https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php, https://www.wikiwand.com/en/Pearson_correlation_coefficient.

###Coeficiente de Correlación de Spearman (prueba no-paramétrica): https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php, https://www.wikiwand.com/en/Spearman%27s_rank_correlation_coefficient, https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf.

###Coeficiente de Correlación de Kendall (prueba no-paramétrica): https://www.statisticshowto.com/kendalls-tau/, https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535, https://personal.utdallas.edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf, https://www.wikiwand.com/en/Kendall_rank_correlation_coefficient.

####Como se verifica en su forma más general [véase Jeremy M. G. Taylor, Kendall’s and Spearman’s Correlation Coefficient in the Presence of a Blocking Variable, (Biometrics, Vol. 43, No. 2 (Jun., 1987), pp.409-416), p. 409], en presencia de “empates”, conocidos también como “observaciones vinculadas” (del inglés “ties”, que, como se verifica en http://www.statistics4u.com/fundstat_eng/dd_ties.html, significa en el contexto de las estadísticas de clasificación de orden -rank order statistics- la existencia de dos o más observaciones que tienen el mismo valor, por lo que imposibilita la asignación de números de rango únicos), es preferible utilizar el coeficiente de correlación de Spearman rho porque su varianza posee una forma más simple (relacionado con el costo computacional, puesto que la investigación de Jeremy Taylor emplea como herramienta de estadística experimental la metodología Monte Carlo, lo que puede verificarse en https://pdodds.w3.uvm.edu/files/papers/others/1987/taylor1987a.pdf).

### RIESGO RELATIVO

####Como se verifica en https://www.wikiwand.com/en/Odds_ratio, el riesgo relativo (diferente a la razón éxito/fracaso y a la razón de momios) es la proporción de éxito de un evento (o de fracaso) en términos del total de ocurrencias (éxitos más fracasos).

### RAZÓN ÉXITO/FRACASO

####Es el cociente entre el número de veces que ocurre un evento y el número de veces en que no ocurre.

####INTERPRETACIÓN: Para interpretar la razón de ataque/no ataque de forma más intuitiva se debe multiplicar dicha razón Ψ (psi) por el número de decenas necesarias Ξ (Xi) para que la razón tenga un dígito d^*∈N a la izquierda del “punto decimal” (en este caso de aplicación hipotético Ξ=1000), resultando así un escalar real υ=Ψ*Ξ (donde υ es la letra griega ípsilon) con parte entera que se interpreta como “Por cada Ξ elementos de la población de referencia bajo la condición especificada (en este caso, que tomó aspirina o que tomó un placebo) estará presente la característica (u ocurrirá el evento, según sea el caso) en (d^*+h) ocasiones, en donde h es el infinitesimal a la derecha del punto decimal (llamado así porque separa no sólo los enteros de los infinitesimales, sino que a su derecha se encuentra la casilla correspondiente justamente a algún número decimal).

### RAZÓN DE MOMIOS

####DEFÍNICIÓN: Es una medida utilizada en estudios epidemiológicos transversales y de casos y controles, así como en los metaanálisis. En términos formales, se define como la posibilidad que una condición de salud o enfermedad se presente en un grupo de población frente al riesgo que ocurra en otro. En epidemiología, la comparación suele realizarse entre grupos humanos que presentan condiciones de vida similares, con la diferencia que uno se encuentra expuesto a un factor de riesgo (mi) mientras que el otro carece de esta característica (mo). Por lo tanto, la razón de momios o de posibilidades es una medida de tamaño de efecto.

####Nótese que es un concepto, evidentemente, de naturaleza frecuentista.

####La razón de momios es el cociente entre las razones de ocurrencia/no-ocurrencia de los tratamientos experimentales estudiados (una razón por cada uno de los dos tratamientos experimentales sujetos de comparación).

### TAMAÑO DEL EFECTO

####Defínase tamaño del efecto como cualquier medida realizada sobre algún conjunto de características (que puede ser de un elemento) relativas a cualquier fenómeno, que es utilizada para abordar una pregunta de interés, según (Kelly y Preacher 2012, 140). Tal y como ellos señalan, la definición es más que una combinación de “efecto” y “tamaño” porque depende explícitamente de la pregunta de investigación que se aborde. Ello significa que lo que separa a un tamaño de efecto de un estadístico de prueba (o estimador) es la orientación de su uso, si responde una pregunta de investigación en específico entonces el estadístico (o parámetro) se convierte en un “tamaño de efecto” y si sólo es parte de un proceso global de predicción entonces es un estadístico (o parámetro) a secas, i.e., su distinción o, expresado en otros términos, la identificación de cuándo un estadístico (o parámetro) se convierte en un tamaño de efecto, es una cuestión puramente epistemológica, no matemática. Lo anterior simplemente implica que, dependiendo del tipo de pregunta que se desee responder el investigador, un estadístico (o parámetro) será un tamaño de efecto o simplemente un estadístico (o parámetro) sin más.

setwd(“C:/Users/User/Desktop/Carpeta de Estudio/Maestría Profesional en Estadística/Semestre II-2021/Métodos, Regresión y Diseño de Experimentos/2/Laboratorios/Laboratorio 2”)

## ESTIMAR EL COEFICIENTE DE CORRELACIÓN DE PEARSON ENTRE TEMPERATURA Y PORCENTAJE DE CONVERSIÓN

###CÁLCULO MANUAL DE LA COVARIANZA

prom.temp = mean(temperatura)

prom.conversion = mean(porcentaje.conversion)

sd.temp = sd(temperatura)

sd.conversion = sd(porcentaje.conversion)

n = nrow(vinilacion)

covarianza = sum((temperatura-prom.temp)*(porcentaje.conversion-prom.conversion))/(n-1)

covarianza

###La covarianza es una medida para indicar el grado en el que dos variables aleatorias cambian en conjunto (véase https://www.mygreatlearning.com/blog/covariance-vs-correlation/#differencebetweencorrelationandcovariance).

###CÁLCULO DE LA COVARIANZA DE FORMA AUTOMATIZADA

cov(temperatura,porcentaje.conversion)

###CÁLCULO MANUAL DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

###Véase https://www.wikiwand.com/en/Pearson_correlation_coefficient (9 de septiembre de 2021).

coef.correlacion = covarianza/(sd.temp*sd.conversion)

coef.correlacion

###CÁLCULO AUTOMATIZADO DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

cor(temperatura,porcentaje.conversion) ###Salvo que se especifique lo contrario (como puede verificarse en la librería de R), el coeficiente de correlación calculado por defecto será el de Pearson, sin embargo, se puede calcular también el coeficiente de Kendall (escribiendo “kendall” en la casilla “method” de la sintaxis “cor”) o el de Spearman (escribiendo “spearman” en la casilla “method” de la sintaxis “cor”).

cor(presion,porcentaje.conversion)

###VÍNCULO, SIMILITUDES Y DIFERENCIAS ENTRE CORRELACIÓN Y COVARIANZA

###El coeficiente de correlación está íntimamente vinculado con la covarianza. La covarianza es una medida de correlación y el coeficiente de correlación es también una forma de medir la correlación (que difiere según sea de Pearson, Kendall o Spearman).

###La covarianza indica la dirección de la relación lineal entre variables, mientras que el coeficiente de correlación mide no sólo la dirección sino además la fuerza de esa relación lineal entre variables.

###La covarianza puede ir de menos infinito a más infinito, mientras que el coeficiente de correlación oscila entre -1 y 1.

###La covarianza se ve afectada por los cambios de escala: si todos los valores de una variable se multiplican por una constante y todos los valores de otra variable se multiplican por una constante similar o diferente, entonces se cambia la covarianza. La correlación no se ve influenciada por el cambio de escala.

###La covarianza asume las unidades del producto de las unidades de las dos variables. La correlación es adimensional, es decir, es una medida libre de unidades de la relación entre variables.

###La covarianza de dos variables dependientes mide cuánto en cantidad real (es decir, cm, kg, litros) en promedio covarían. La correlación de dos variables dependientes mide la proporción de cuánto varían en promedio estas variables entre sí.

###La covarianza es cero en el caso de variables independientes (si una variable se mueve y la otra no) porque entonces las variables no necesariamente se mueven juntas (por el supuesto de ortogonalidad entre los vectores, que expresa geométricamente su independencia lineal). Los movimientos independientes no contribuyen a la correlación total. Por tanto, las variables completamente independientes tienen una correlación cero.

## CREAR UNA MATRIZ DE CORRELACIONES DE PEARSON Y DE SPEARMAN

####La vinilación de los glucósidos se presenta cuando se les agrega acetileno a alta presión y alta temperatura, en presencia de una base para producir éteres de monovinil.

###Los productos de monovinil éter son útiles en varios procesos industriales de síntesis.

###Interesa determinar qué condiciones producen una conversión máxima de metil glucósidos para diversos isómeros de monovinil.

cor(vinilacion) ###Pearson

cor(vinilacion, method=”spearman”) ###Spearman

## CREAR UNA MATRIZ DE VARIANZAS Y COVARIANZAS (LOCALIZADAS ESTAS ÚLTIMAS EN LA DIAGONAL PRINCIPAL DE LA MATRIZ)

cov(vinilacion)

## GENERAR GRÁFICOS DE DISPERSIÓN

plot(temperatura,porcentaje.conversion)

plot(porcentaje.conversion~temperatura)

mod = lm(porcentaje.conversion~temperatura)

abline(mod,col=2)

###La sintaxis “lm” es usada para realizar ajuste de modelos lineales (es decir, ajustar un conjunto de datos a la curva dibujada por un modelo lineal -i.e., una línea recta-, lo cual -si es estadísticamente robusto- implica validar que el conjunto de datos en cuestión posee un patrón de comportamiento geométrico lineal).

###La sintaxis “lm” puede utilizar para el ajuste el método de los mínimos cuadrados ponderados o el método de mínimos cuadrados ordinarios, en función de si la opción “weights” se llena con un vector numérico o con “NULL”, respectivamente).

### La casilla “weights” de la sintaxis “lm” expresa las ponderaciones a utilizar para realizar el proceso de ajuste (si las ponderaciones son iguales para todas las observaciones, entonces el método de mínimos cuadrados ponderados se transforma en el método de mínimos cuadrados ordinarios). Estas ponderaciones son, en términos computacionales, aquellas que minimizan la suma ponderada de los errores al cuadrado.

###Las ponderaciones no nulas pueden user usadas para indicar diferentes varianzas (con los valores de las ponderaciones siendo inversamente proporcionales a la varianza); o, equivalentemente, cuando los elementos del vector de ponderaciones son enteros positivos w_i, en donde cada respuesta y_i es la media de las w_j unidades observacionales ponderadas (incluyendo el caso de que hay w_i observaciones iguales a y_i y los datos se han resumido).

###Sin embargo, en el último caso, observe que no se utiliza la variación dentro del grupo. Por lo tanto, la estimación sigma y los grados de libertad residuales pueden ser subóptimos; en el caso de pesos de replicación, incluso incorrecto. Por lo tanto, los errores estándar y las tablas de análisis de varianza deben tratarse con cuidado.

###La estimación sigma se refiere a la sintaxis “sigma” que estima la desviación estándar de los errores (véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/sigma.html).

###Si la variable de respuesta (o dependiente) es una matriz, un modelo lineal se ajusta por separado mediante mínimos cuadrados a cada columna de la matriz.

###Cabe mencionar que “formula” (la primera entrada de la sintaxis “lm”) tiene un término de intersección implícito (recuérdese que toda ecuación de regresión tiene un intercepto B_0, que puede ser nulo). Para eliminar dicho término, debe usarse y ~ x – 1 o y ~ 0 + x.

plot(presion~porcentaje.conversion)

mod = lm(presion~porcentaje.conversion) ###Ajuste a la recta antes mencionado y guardado bajo el nombre “mod”.

abline(mod,col=2) ###Es crear una línea color rojo (col=2) en la gráfica generada (con la función “mod”)

## REALIZAR PRUEBA DE HIPÓTESIS PARA EL COEFICIENTE DE CORRELACIÓN

###Véase https://opentextbc.ca/introstatopenstax/chapter/testing-the-significance-of-the-correlation-coefficient/, https://online.stat.psu.edu/stat501/lesson/1/1.9,

###Para estar casi seguros (en relación al concepto de convergencia) Para asegurar que existe al menos una leve correlación entre dos variables (X,Y) se tiene que probar que el coeficiente de correlación poblacional (r) no es nulo.

###Para que la prueba de hipótesis tenga validez se debe verificar que la distribución de Y para cada X es normal y que sus valores han sido seleccionados aleatoriamente.

###Si se rechaza la hipótesis nula, no se asegura que haya una correlación muy alta.

###Si el valor p es menor que el nivel de significancia se rechaza la Ho de que el coeficiente de correlación entre Y y X es cero en términos de determinado nivel de significancia estadística.

###Evaluar la significancia estadística de un coeficiente de correlación puede contribuir a validar o refutar una investigación donde este se haya utilizado (siempre que se cuenten con los datos empleados en la investigación), por ejemplo, en el uso de modelos lineales de predicción.

###Se puede utilizar la distribución t con n-2 grados de libertad para probar la hipótesis.

###Como se observará a continuación, además de la forma estándar, también es posible calcular t como la diferencia entre el coeficiente de correlación.

###Si la probabilidad asociada a la hipótesis nula es casi cero, puede afirmarse a un nivel de confianza determinado de que la correlación es altamente significativa en términos estadísticos.

###FORMA MANUAL

ee = sqrt((1-coef.correlacion^2)/(n-2))

t.calculado = (coef.correlacion-0)/ee ###Aquí parece implicarse que el valor t puede calcularse como el cociente entre el coeficiente de correlación muestral menos el coeficiente de correlación poblacional sobre el error estándar de la media.

2*(1-pt(t.calculado,n-2))

###FORMA AUTOMATIZADA

cor.test(temperatura,porcentaje.conversion) ###El valor del coeficiente de correlación que se ha estipulado (que es cero) debe encontrarse dentro del intervalo de confianza al nivel de probabilidad pertinente para aceptar Ho y, caso contrario, rechazarla.

cor.test(temperatura,presion)

###Como se señala en https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/,  calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.

qt(0.975,6)

### EJEMPLO DE APROXIMACIÓN COMPUTACIONAL DE LA DISTRIBUCIÓN t DE STUDENT A LA DISTRIBUCIÓN NORMAL

###El intervalo de confianza se calcula realizando la transformación-z de Fisher (tanto con la función automatizada de R como con la función personalizada elaborada) como a nivel teórico), la cual se utiliza porque cuando la transformación se aplica al coeficiente de correlación muestral, la distribución muestral de la variable resultante es aproximadamente normal, lo que implica que posee una varianza que es estable sobre diferentes valores de la correlación verdadera subyacente (puede ampliarse más en https://en.wikipedia.org/wiki/Fisher_transformation).

coef.correlacion+c(-1,1)*qt(0.975,6)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido como una distribución t de Student.

coef.correlacion+c(-1,1)*qnorm(0.975)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido normalmente.

## CASO DE APLICACIÓN HIPOTÉTICO

###En un estudio sobre el metabolismo de una especie salvaje, un biólogo obtuvo índices de actividad y datos sobre tasas metabólicas para 20 animales observados en cautiverio.

rm(list=ls()) ###Remover todos los objetos de la lista

actividad <- read.csv(“actividad.csv”, sep = “,”, dec=”.”, header = T)

attach(actividad)

n=nrow(actividad)

str(actividad)####”str” es para ver qué tipo de dato es cada variable.

plot(Indice.actividad,Tasa.metabolica)

###Coeficiente de Correlación de Pearson

cor(Indice.actividad,Tasa.metabolica, method=”pearson”)

###Se rechaza la hipótesis nula de que la correlación de Pearson es 0.

###Coeficiente de correlación de Spearman

(corr = cor(Indice.actividad,Tasa.metabolica, method=”spearman”))

(t.s=corr*(sqrt((n-2)/(1-(corr^2)))))

(gl=n-2)

(1-pt(t.s,gl))*2

###Se rechaza la hipótesis nula de que la correlación de Spearman es 0.

###NOTA ADICIONAL:

###Ambas oscilan entre -1 y 1. El signo negativo denota la relacion inversa entre ambas. La correlacion de Pearson mide la relación lineal entre dos variables (correlacion 0 es independencia lineal, que los vectores son ortogonales). La correlación de Pearson es para variables numérica de razón y tiene el supuesto de normalidad en la distribución de los valores de los datos. Cuando los supuestos son altamente violados, lo mejor es usar una medida de correlación no-paramétrica, específicamente el coeficiente de Spearman. Sobre el coeficiente de Spearman se puede decir lo mismo en relación a la asociación. Así, valores de 0 indican correlación 0, pero no asegura que por ser cero las variables sean independientes (no es concluyente).

### TABLAS DE CONTINGENCIA Y PRUEBA DE INDEPENDENCIA

###Una tabla de contingencia es un arreglo para representar simultáneamente las cantidades de individuos y sus porcentajes que se presentan en cada celda al cruzar dos variables categóricas.

###En algunos casos una de las variables puede funcionar como respuesta y la otra como factor, pero en otros casos sólo interesa la relación entre ambas sin intentar explicar la dirección de la relación.

###CASO DE APLICACIÓN HIPOTÉTICO

###Un estudio de ensayos clínicos trataba de probar si la ingesta regular de aspirina reduce la mortalidad por enfermedades cardiovasculares. Los participantes en el estudio tomaron una aspirina o un placebo cada dos días. El estudio se hizo de tal forma que nadie sabía qué pastilla estaba tomando. La respuesta es que si presenta o no ataque cardiaco (2 niveles),

rm(list=ls())

aspirina = read.csv(“aspirina.csv”, sep = “,”, dec=”.”, header = T)

aspirina

str(aspirina)

attach(aspirina)

names(aspirina)

str(aspirina)

View(aspirina)

#### 1. Determinar las diferencias entre la proporción a la que ocurrió un ataque dependiendo de la pastilla que consumió. Identifique el porcentaje global en que presentó ataque y el porcentaje global en que no presentó.

e=tapply(aspirina$freq,list(ataque,pastilla),sum) ###Genera la estructura de la tabla con la que se trabajará (la base de datos organizada según el diseño experimental previamente realizado).

prop.table(e,2) ###Riesgo Relativo columna. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

prop.table(e,1) ###Riesgo Relativo fila. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

(et=addmargins(e)) ###Tabla de contingencia.

addmargins(prop.table(e)) ####Distribución porcentual completa.

###Si se asume que el tipo de pastilla no influye en el hecho de tener un ataque cardíaco, entonces, debería de haber igual porcentaje de ataques en la columna de médicos que tomaron aspirina que en la de los que tomaron placebo.

###Se obtiene el valor esperado de ataques y no ataques.

### Lo anterior se realiza bajo el supuesto de que hay un 1.3% de ataques en general y un 98.7% de no ataques.

#### 2. Usando los valores observados y esperados, calcular el valor de Chi-Cuadrado para determinar si existe dependencia entre ataque y pastilla?

###Al aplicar la distribución Chi cuadrado, que es una distribución continua, para representar un fenómeno discreto, como el número de casos en cada unos de los supuestos de la tabla de 2*2, existe un ligero fallo en la aproximación a la realidad. En números grandes, esta desviación es muy escasa, y puede desecharse, pero cuando las cantidades esperadas en alguna de las celdas son números pequeños- en general se toma como límite el que tengan menos de cinco elementos- la desviación puede ser más importante. Para evitarlo, Yates propuso en 1934 una corrección de los métodos empleados para hallar el Chi cuadrado, que mejora la concordancia entre los resultados del cálculo y la distribución Chi cuadrado. En el articulo anterior, correspondiente a Chi cuadrado,  el calculador expone, además de los resultados de Chi cuadrado, y las indicaciones para decidir, con arreglo a los límites de la distribución para cada uno de los errores alfa admitidos, el rechazar o no la hipótesis nula, una exposición de las frecuencias esperadas en cada una de las casillas de la tabla de contingencia, y la advertencia de que si alguna de ellas tiene un valor inferior a 5 debería emplearse la corrección de Yates. Fuente: https://www.samiuc.es/estadisticas-variables-binarias/valoracion-inicial-pruebas-diagnosticas/chi-cuadrado-correccion-yates/.

###Como se señala en [James E. Grizzle, Continuity Correction in the χ2-Test for 2 × 2 Tables, (The American Statistician, Oct., 1967, Vol. 21, No. 4 (Oct., 1967), pp. 28-32), p. 29-30], técnicamente hablando, la corrección de Yates hace que “(…) las probabilidades obtenidas bajo la distribución χ2 bajo la hipótesis nula converjan de forma más cercana con las probabilidades obtenidas bajo el supuesto de que el conjunto de datos fue generado por una muestra proveniente de la distribución hipergeométrica, i.e., generados bajo el supuesto que los dos márgenes de la tabla fueron fijados con antelación al muestreo.”

###Grizzle se refiere con “márgenes” a los totales de la tabla (véase https://www.tutorialspoint.com/how-to-create-a-contingency-table-with-sum-on-the-margins-from-an-r-data-frame). Además, la lógica de ello subyace en la misma definición matemática de la distribución hipergeométrica. Como se puede verificar en RStudio mediante la sintaxis “?rhyper”, la distribución hipergeométrica tiene la estructura matemática (distribución de probabilidad) p(x) = choose(m, x) choose(n, k-x)/choose(m+n, k), en donde m es el número de éxitos, n es el número de fracasos lo que ) y k es el tamaño de la muestra (tanto m, n y k son parámetros en función del conjunto de datos, evidentemente), con los primeros dos momentos definidos por E[X] = μ = k*p y la varianza se define como Var(X) = k p (1 – p) * (m+n-k)/(m+n-1). De lo anterior se deriva naturalmente que para realizar el análisis estocástico del fenómeno modelado con la distribución hipergeométrica es necesario conocer la cantidad de sujetos que representan los éxitos y los fracasos del experimento (en donde “éxito” y “fracaso” se define en función del planteamiento del experimento, lo cual a su vez obedece a múltiples factores) y ello implica que se debe conocer el total de los sujetos experimentales estudiados junto con su desglose en los términos binarios ya especificados.

###Lo mismo señalado por Grizzle se verifica (citando a Grizzle) en (Biometry, The Principles and Practice of Statistics in Biological Research, Robert E. Sokal & F. James Rohlf, Third Edition, p. 737), especificando que se vuelve innecesaria la corrección de Yates aún para muestras de 20 observaciones.

###Adicionalmente, merece mención el hecho que, como es sabido, la distribución binomial se utiliza con frecuencia para modelar el número de éxitos en una muestra de tamaño n extraída con reemplazo de una población de tamaño N. Sin embargo, si el muestreo se realiza sin reemplazo, las muestras extraídas no son independientes y, por lo tanto, la distribución resultante es una hipergeométrica; sin embargo, para N mucho más grande que n, la distribución binomial sigue siendo una buena aproximación y se usa ampliamente (véase https://www.wikiwand.com/en/Binomial_distribution).

###Grados de libertad correspondientes: número de filas menos 1 por número de columnas menos 1.

###Ho = Hay independencia entre el ataque y las pastillas.

(tabla.freq<-xtabs(freq~ataque+pastilla, data=aspirina))

###La tabla de frecuencias contiene tanto las frecuencias observadas como las esperadas.

###La frecuencia esperada es el conteo de observaciones que se espera en una celda, en promedio, si las variables son independientes.

###La frecuencia esperada de una variable se calcula como el producto entre el cociente [(Total de la Columna j)/(Total de Totales)]*(Total Fila i).

###PRUEBA CHI-CUADRADO AUTOMATIZADA

(prueba.chi<-chisq.test(tabla.freq,correct=F) ) ###La sintaxis “chisq.test” sirve para realizar la prueba de Chi-Cuadrado en tablas de contingencia y para realizar pruebas de bondad de ajuste.

names(prueba.chi)

###PRUEBA CHI-CUADRADO PASO A PASO

(esperado<-prueba.chi$expected) ###valores esperados

(observado<-prueba.chi$observed) ###valores observados

(cuadrados<-(esperado-observado)^2/esperado)

(chi<-sum(cuadrados))

1-pchisq(chi,1) ###Valor de p de la distribución Chi-Cuadrado (especificada mediante el conjunto de datos) calculado de forma no-automatizada.

###Si el valor p es mayor que el nivel de significancia se falla en rechazar Ho, si es menor se rechaza Ho.

###Se rechaza Ho con un nivel de significancia alfa de 0.05. Puesto que se tiene una probabilidad muy baja de cometer error tipo I, i.e., rechazar la hipótesis nula siendo falsa.

GENERALIDADES Y ORÍGENES HISTÓRICOS DE LA DISTRIBUCIÓN CHI-CUADRADO

ISADORE NABI

FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE II, CÓDIGO EN R STUDIO CON COMENTARIOS

ISADORE NABI

##ESTABLECER EL DIRECTORIO DE TRABAJO

setwd(“(…)”)

##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN

###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio. 

###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.

###- ventas= la cantidad de productos vendidos en el último mes.

read.table(“estudios.txt”)

## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS

estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))

names(estudios)

nrow(estudios)

ncol(estudios)

dim(estudios)

## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”

str(estudios)

attach(estudios)

ventas

###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.

###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)

## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO

mean(ventas)

sd(ventas)

var(ventas)

apply(estudios,2,mean)

apply(estudios,2,sd)

###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos

###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas

## APLICAR LA FUNCIÓN “quantile”.

quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.

apply(estudios,2,quantile)

###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).

(qv = quantile(ventas,probs=c(0.025,0.975)))

###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).

## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”

hist(ventas)

abline(v=qv,col=2)

###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).

###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas

hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,

     main=”Gráfico

   Histograma de las ventas”)

detach(estudios)

###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).

## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000

y = rnorm(1000,35,2)

hist(y)

qy = quantile(y,probs=c(0.025,0.975))

hist(y,freq=F)

abline(v=qy,col=2)

lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.

## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y  s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.

plot.m = function(n,m,s) {

  y = rnorm(n,m,s)

  qy = quantile(y,probs=c(0.025,0.975))

  hist(y,freq=F)

  abline(v=qy,col=2)

  lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.

  mean(y)

}

## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)

plot.m(10000,100,15)

###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)

##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.

n=10000; m=100;s=15

I = 1000 ###”I” son las iteraciones

medias = numeric(I)

for(i in 1:I)           {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)

  sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.

  medias[i]=mean(sam)   } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).

###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular  1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.

## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)

###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).

sd(medias)     ### desviación de la distribución de las medias

(ee = s/sqrt(n)  )### equivalencia teórica

## COMPARAR LA DISTRIBUCIÓN DE MEDIAS

m

mean(medias)

## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR

hist(medias)

qm = quantile(medias,probs=c(0.025,0.975))

hist(medias,freq=F)

abline(v=qm,col=2)

lines(density(medias),col=2)

## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO

attach(estudios)

### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva

n = length(ventas) ###Cardinalidad o módulo del conjunto de datos

t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl

###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).

###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)

###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/

###”n-1″ son los grados de libertad de la distribución t de student.

#### Error Estándar

ee = sd(ventas)/sqrt(n)

### Intervalo

mean(ventas)-t*ee

mean(ventas)+t*ee

mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.

## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X

ic = function(x,p) {

  n = length(x)

  t = qt(p+((1-p)/2),n-1)

  ee = sd(x)/sqrt(n)

  mean(x)+c(-1,1)*t*ee

}

###Intervalo de 95% confianza para ventas

ic(ventas,0.95)

ic(ventas,0.99)

###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.

ic(ipc,0.95)

ic(menor16,0.95)

## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA

t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.

### Realizando manualmente el cálculo anterior:

(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.

2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.

2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.

###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/

## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)

(ipc1 = 1*(ipc<17)+2*(ipc>=17))

ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))

plot(ipc2,ipc)

abline(h=17,col=2)

## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT

library(gplots)

plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)

boxplot(ventas~ipc2)

## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17

(med = tapply(ventas,ipc1,mean))

(dev = tapply(ventas,ipc1,sd))

(var = tapply(ventas,ipc1,var))

(n   = table(ipc1))

dif=med[1]-med[2]

###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)

varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17

e.e=sqrt((varpond/n[1])+(varpond/n[2]))

dif/e.e

t.test(ventas~ipc1,var.equal=T)

t.test(ventas~ipc1)  #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)

e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))

dif/e.e2

a=((var[1]/n[1]) + (var[2]/n[2]))^2

b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))

(glmod=a/b)

t.test(ventas~ipc1,var.equal=F)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).

###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.

## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA

(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).

pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.

###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).

(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.

###Realizando de forma automatizada el procedimiento anterior:

var.test(ventas~ipc1)

detach(estudios)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.

## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)

attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.

plot(extra ~ group)

plotmeans(extra ~ group,connect=F)  ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).

A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).

B = sleep[sleep$group == 2,]

plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1

Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)

lines(B$extra,col=”blue”)

legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)

t.test(A$extra,B$extra)

t.test(A$extra,B$extra,paired=T)

t.test(A$extra-B$extra,mu=0)

###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.

###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`

## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)

library(pwr) ###”pwr” es una base de datos nativa de R

delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)

s=10.2 ###Desviación estándar muestral

(d=delta/s) #Tamano del efecto.

pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)

## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9

(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))

potencia$d*s  #Delta

## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA

s=10.2

deltas=seq(2,6,length=30)

n=numeric(30)

for(i in 1:30) {

  (d[i]=deltas[i]/s)

  w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)

  n[i]=w$n

}

plot(deltas,n,type=”l”)

## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS

s2p=290.9  ###Varianza ponderada de los dos grupos

(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos

delta=15

(d=delta/sp)

pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)

ANÁLISIS TEÓRICO DE LA FUNCIÓN CUANTIL EN R STUDIO

isadore nabi

Se sabe que la sintaxis qnorm(p, mean = 0, sd = 1, lower.tail = TRUE or FALSE, log.p = TRUE or FALSE) es para calcular una probabilidad p de una distribución normal estándar con media m=0 y error estándar de s=1. Sabemos también que la función cuantil está asociada con una distribución de probabilidad de una variable aleatoria y que especifica el valor de la variable aleatoria de manera que la probabilidad de que la variable sea menor o igual a ese valor es igual a la probabilidad dada (que en la sintaxis de R se designa como p); cabe mencionar que también se llama función de punto porcentual o función de distribución acumulativa inversa. Según la documentación de R sobre la sintaxis, su componente “lower.tail = TRUE or FALSE” menciona que “logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x]”, lo que implicaría, dado todo lo anterior, que esa sintaxis (utilizada con la configuración inicial – lower.tail = TRUE-) calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.

Así, la función cuantil es la función inversa de la función de distribución acumulada y es de importancia fundamental en las Probabilidades y la Estadística porque en ocasiones no es posible definir la función de distribución acumulada, entonces se trabaja con su inversa. En términos más intuitivos, la función de distribución acumulada  permite conocer la probabilidad de que la variable aleatoria X tome un valor menor o igual a un valor especificado , mientras que la función cuantil muestra sintéticamente (mediante el análisis del valor umbral que arroja) la cantidad de valores que se encuentran por debajo del umbral (incluyendo al umbral, es decir, P[X ≤ x]) y cuáles son estos valores; evidentemente la relación anterior se puede invertir y hablar de los que se encuentren por encima del valor umbral (sin incluir al umbral, es decir, P[X > x]), todo depende de las necesidades del investigador y del planteamiento teórico del problema.

Finalmente, si se utiliza la sintaxis de R “qK(c, …)” (siendo K cualquier función de distribución) se están calculando los intervalos de confianza con la función cuantil y no con la función de distribución acumulada, para garantizarte que siempre sea posible realizar tal cálculo, en caso la función de distribución acumulada no exista, trabajando con su función inversa.

Por ejemplo, la función percentil sirve para responder a preguntas como  “¿Cuál es la nota en la cual se acumula el 78.5% de los estudiantes?”. Por supuesto, la pregunta no habla de en qué sentido se acumula esa proporción de los estudiantes ni especifica si se incluye el punto alrededor del cual se acumula tal proporción de estudiantes. Para el caso en que la pregunta  “cuál es la nota debajo de la cual está el x porcentaje de los alumnos” y se respondería en sus dos sentidos de la siguiente manera (si se define x = rnorm):

qnorm(0.7850824,72,15.2) = 84, que será inicialmente P[X ≤ x]. Aquí, el 78.5% de los estudiantes tienen una nota menor o igual a 84.

qnorm(0.7850824,72,15.2,lower.tail = F) = 60, que la configuración personalizada para obtener el complemento de probabilidad P[X > x]. Aquí, el 78.5% de los estudiantes tienen una nota mayor que 60.

Figura 1

Además, puede verse que el valor umbral para el cual se cumple que P [X ≤ x] es igual al valor umbral  (1-P) [X > x] o, lo que es lo mismo, el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (incluyendo el umbral en cuestión) es igual al valor umbral por encima del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción complementaria (1-P) de las ocasiones (sin incluir el umbral en cuestión).

Figura 2

ENCUESTA NACIONAL SOBRE LOS ASPECTOS DE LA VIRTUALIDAD VINCULADOS CON LA PANDEMIA DEL COVID-19 (ENAVIRPA 2021)

ISADORE NABI

VII. REFERENCIAS

Aldrich, J. H., & Nelson, F. D. (1984). Linear Probability, Logit, and Probit Models. Beverly Hills: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Allen, M. (2017). The SAGE Encyclopedia of COMMUNICATION RESEARCH METHODS. London: SAGE Publications, Inc.

AMERICAN PSYCHOLOGICAL ASSOCIATION. (2021, Julio 15). level. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/level

AMERICAN PYSCHOLOGICAL ASSOCIATION. (2021, Julio 15). factor. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/factor

AMERICAN PYSCHOLOGY ASSOCIATION. (2021, Julio 15). logistic regression (LR). Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/logistic-regression

Barrios, J. (2019, Julio 19). La matriz de confusión y sus métricas . Retrieved from Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Bhuptani, R. (2020, Julio 13). Quora. Retrieved from What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Birnbaum, Z. W., & Sirken, M. G. (1950, Marzo). Bias Due to Non-Availability in Sampling Surveys. Journal of the American Statistical Association, 45(249), 98-111.

Burrus, C. S. (2021, Julio 7). Iterative Reweighted Least Squares. Retrieved from https://cnx.org/exports/[email protected]/iterative-reweighted-least-squares-12.pdf

Centro Centroamericano de Población. (2021, Abril 28). Variables y escalas de medición. Retrieved from Universidad de Costa Rica: https://ccp.ucr.ac.cr/cursos/epidistancia/contenido/2_escmed.html

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Departamento Administrativo Nacional de Estadística. (2003). Metodología de Diseño Muestral. Bogotá: Dirección Sistema Nacional de Información Estadística. Retrieved from https://www.dane.gov.co/files/EDI/anexos_generales/Metodologia_diseno_muestral_anexo1.pdf?phpMyAdmin=a9ticq8rv198vhk5e8cck52r11

Díaz-Narváez, V. P. (2017). Regresión logística y decisiones clínicas. Nutrición Hospitalaria, 34(6), 1505-1505. Retrieved from https://scielo.isciii.es/pdf/nh/v34n6/36_diaz.pdf

Google Developers. (2021, Julio 19). Clasificación: Exactitud. Retrieved from https://developers.google.com/machine-learning/crash-course/classification/accuracy

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Gujarati, D., & Porter, D. (2010, Julio 8). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Retrieved from Homocedasticidad.

Haskett, D. R. (2014, Octubre 10). “Mitochondrial DNA and Human Evolution” (1987), by “Mitochondrial DNA and Human Evolution” (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson. Retrieved from The Embryo Project Encyclopedia: https://embryo.asu.edu/pages/mitochondrial-dna-and-human-evolution-1987-rebecca-louise-cann-mark-stoneking-and-allan

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

Instituto dei Sistemi Complessi. (2021, Febrero 27). Topolical vs Metric Distance. Retrieved from Biological Systems: https://www.isc.cnr.it/research/topics/physical-biology/biological-systems/topological-vs-metric-distance/

Instituto Nacional de Estadística y Censos de Costa Rica. (2016, Julio). Manual de Clasificación Geográfica con Fines Estadísticos de Costa Rica. Retrieved from Biblioteca Virtual: https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/meinstitucionalmcgfecr.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Retrieved from https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2021, 7 14). Factor de Expansión. Retrieved from INEC: https://www.inec.cr/sites/default/files/_book/F.html

Instituto Nacional de Estadística y Censos de la República Argentina. (2019). Encuesta de Actividades de Niños, Niñas y Adolescentes 2016-2017. Factores de expansión, estimación y cálculo de los errores por muestra para el dominio rural. Buenos Aires: Ministerio de Hacienda. Retrieved from https://www.indec.gob.ar/ftp/cuadros/menusuperior/eanna/anexo_bases_eanna_rural.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

Jose, K. (2020, Junio 27). Graph Theory | Isomorphic Trees. Retrieved from Towards Data Science: https://towardsdatascience.com/graph-theory-isomorphic-trees-7d48aa577e46

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Retrieved from https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Kolmogórov, A. N., & Fomin, S. V. (1978). Elementos de la Teoría de Funciones y del Análisis Funcional (Tercera ed.). (q. e.-m. Traducido del ruso por Carlos Vega, Trans.) Moscú: MIR.

Liao, T. F. (1994). INTERPRETING PROBABILITY MODELS. Logit, Probit, and Other Generalized Linear Models. Iowa: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Lipschutz, S. (1992). Álgebra Lineal. Madrid: McGraw-Hill.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

McCullagah, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135(3), 370-384.

Online Stat Book. (2021, Julio 15). Levels of an Independent Variable. Retrieved from Independent and dependent variables: https://onlinestatbook.com/2/introduction/variables.html

Patil, G. P., & Shorrock, R. (1965). On Certain Properties of the Exponential-type Families. Journal of the Royal Statistical, 27(1), 94-99.

Perry, J. (2014, Abril 2). NORM TO/FROM METRIC. Retrieved from The University of Southern Mississippi: https://www.math.usm.edu/perry/old_classes/mat681sp14/norm_and_metric.pdf

Ritchey, F. (2002). ESTADÍSTICA PARA LAS CIENCIAS SOCIALES. El potencial de la imaginación estadística. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.

Samuels, S. (2014, 11 19). Can I get to an approximation of the population with knowledge of the expansion factor? Retrieved from Cross Validated. StackExchange: https://stats.stackexchange.com/questions/124750/can-i-get-to-an-approximation-of-the-population-with-knowledge-of-the-expansion

StackExchange Cross Validated. (2017, Febrero 2). “Least Squares” and “Linear Regression”, are they synonyms? Retrieved from What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

StackExchange Data Science. (2016, Junio 19). Is GLM a statistical or machine learning model? Retrieved from https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (2014, Marzo 15). Supervised Learning, Unsupervised Learning, Regression. Retrieved from https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

TalkStats. (2011, Noviembre 29). SPSS. Retrieved from Forums: http://www.talkstats.com/threads/what-is-the-difference-between-a-factor-and-a-covariate-for-multinomial-logistic-reg.21864/

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Retrieved from https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

van den Berg, R. G. (2021, Julio 15). Measurement Levels – What and Why? Retrieved from SPSS Tutorials: https://www.spss-tutorials.com/measurement-levels/

Weisstein, E. W. (2021, Julio 15). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 21). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 18). Smooth Function. Retrieved from Wolfram MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SmoothFunction.html

Wikimedia. (2021, Abril 6). Commons. Retrieved from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg

Wikipedia. (2021, Julio 6). Graph isomorphism. Retrieved from Morphism: https://en.wikipedia.org/wiki/Graph_isomorphism

Wikipedia. (2021, Mayo 21). Iterative proportional fitting. Retrieved from Statistical algorithms: https://en.wikipedia.org/wiki/Iterative_proportional_fitting

Wikipedia. (2021, Febrero 25). Iteratively reweighted least squares. Retrieved from Least squares: https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares

Wikipedia. (2021, Julio 13). Logistic function. Retrieved from Growth curves: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Mayo 22). Logistic regression. Retrieved from Regression models: https://en.wikipedia.org/wiki/Logistic_regression

Wikipedia. (2021, Junio 14). Logit. Retrieved from Special functions: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Julio 8). Lp space. Retrieved from Measure theory: https://www.wikiwand.com/en/Lp_space

Wikipedia. (2021, Abril 15). Odds. Retrieved from Wagering: https://en.wikipedia.org/wiki/Odds

Wikipedia. (2021, Julio 10). Precision and recall. Retrieved from Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

Wooldridge, J. (2010). Econometric Analysis of Cross Section and Panel Data (Segunda ed.). Cambridge, Massachusetts: MIT Press.

GENERALIDADES DE LA TEORÍA DEL APRENDIZAJE ESTADÍSTICO

ISADORE NABI

VI. Referencias

Barrios, J. (19 de Julio de 2019). La matriz de confusión y sus métricas . Obtenido de Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Google Developers. (19 de Julio de 2021). Clasificación: Exactitud. Obtenido de https://developers.google.com/machine-learning/crash-course/classification/accuracy

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

StackExchange Data Science. (19 de Junio de 2016). Is GLM a statistical or machine learning model? Obtenido de https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (15 de Marzo de 2014). Supervised Learning, Unsupervised Learning, Regression. Obtenido de https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

Wikipedia. (10 de Julio de 2021). Precision and recall. Obtenido de Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

JUSTIFICACIÓN TEÓRICA DEL USO DE MÉTODOS DE REGRESIÓN SOBRE INSTRUMENTOS PSICOMÉTRICOS: EL CASO DE LA ENCUESTA.

ISADORE NABI

Como señala (Cochran, 1991, pág. 195), “Uno de los rasgos de la estadística teórica es la creación de una vasta teoría que discute los métodos de obtención de buenas estimaciones a partir de los datos. En el desarrollo de la teoría, específicamente para encuestas de muestreo, se han utilizado poco estos conocimientos, por dos causas principales. Primero, en las encuestas que contienen un gran número de atributos, es una gran ventaja, aunque se disponga de máquinas computadoras, el poder utilizar procedimientos de estimación que requieran poco más que simples sumas, en tanto que los métodos superiores de estimación de la estadística teórica, como lo son la máxima verosimilitud, podrían necesitar una serie de aproximaciones sucesivas antes de encontrar una estimación (…) La mayoría de los métodos de investigación de la estadística teórica suponen que se conoce la forma funcional de la distribución de frecuencia que sigue a los datos de la muestra, y el método de estimación de estimación está cuidadosamente engranado de acuerdo a este tipo de distribución. En la teoría de encuestas por muestreo se ha preferido hacer, cuando más, algunos supuestos respecto a esta distribución de frecuencia. Esta actitud resulta razonable para tratar con encuestas en las que el tipo de distribución puede variar de un atributo a otro, y cuando no deseamos detenernos a examinarlas todas, antes de decidir cómo hacer cada estimación. En consecuencia, actualmente, las técnicas de estimación para el trabajo de encuestas por muestreo son de alcances restringidos. Ahora consideraremos dos técnicas, el método de razón (…) y el método de regresión línea (…)” Así, “Al igual que la estimación de razón, la regresión lineal se ha diseñado para incrementar la precisión en el uso de una variable auxiliar  correlacionada con .” (Cochran, 1991, pág. 239).