GENERALIDADES Y ORÍGENES HISTÓRICOS DE LA DISTRIBUCIÓN CHI-CUADRADO

ISADORE NABI

JUSTIFICACIÓN TEÓRICA DEL USO DE MÉTODOS DE REGRESIÓN SOBRE INSTRUMENTOS PSICOMÉTRICOS: EL CASO DE LA ENCUESTA.

ISADORE NABI

Como señala (Cochran, 1991, pág. 195), “Uno de los rasgos de la estadística teórica es la creación de una vasta teoría que discute los métodos de obtención de buenas estimaciones a partir de los datos. En el desarrollo de la teoría, específicamente para encuestas de muestreo, se han utilizado poco estos conocimientos, por dos causas principales. Primero, en las encuestas que contienen un gran número de atributos, es una gran ventaja, aunque se disponga de máquinas computadoras, el poder utilizar procedimientos de estimación que requieran poco más que simples sumas, en tanto que los métodos superiores de estimación de la estadística teórica, como lo son la máxima verosimilitud, podrían necesitar una serie de aproximaciones sucesivas antes de encontrar una estimación (…) La mayoría de los métodos de investigación de la estadística teórica suponen que se conoce la forma funcional de la distribución de frecuencia que sigue a los datos de la muestra, y el método de estimación de estimación está cuidadosamente engranado de acuerdo a este tipo de distribución. En la teoría de encuestas por muestreo se ha preferido hacer, cuando más, algunos supuestos respecto a esta distribución de frecuencia. Esta actitud resulta razonable para tratar con encuestas en las que el tipo de distribución puede variar de un atributo a otro, y cuando no deseamos detenernos a examinarlas todas, antes de decidir cómo hacer cada estimación. En consecuencia, actualmente, las técnicas de estimación para el trabajo de encuestas por muestreo son de alcances restringidos. Ahora consideraremos dos técnicas, el método de razón (…) y el método de regresión línea (…)” Así, “Al igual que la estimación de razón, la regresión lineal se ha diseñado para incrementar la precisión en el uso de una variable auxiliar  correlacionada con .” (Cochran, 1991, pág. 239).