FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE II, CÓDIGO EN R STUDIO CON COMENTARIOS

ISADORE NABI

##ESTABLECER EL DIRECTORIO DE TRABAJO

setwd(“(…)”)

##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN

###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio. 

###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.

###- ventas= la cantidad de productos vendidos en el último mes.

read.table(“estudios.txt”)

## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS

estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))

names(estudios)

nrow(estudios)

ncol(estudios)

dim(estudios)

## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”

str(estudios)

attach(estudios)

ventas

###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.

###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)

## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO

mean(ventas)

sd(ventas)

var(ventas)

apply(estudios,2,mean)

apply(estudios,2,sd)

###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos

###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas

## APLICAR LA FUNCIÓN “quantile”.

quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.

apply(estudios,2,quantile)

###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).

(qv = quantile(ventas,probs=c(0.025,0.975)))

###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).

## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”

hist(ventas)

abline(v=qv,col=2)

###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).

###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas

hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,

     main=”Gráfico

   Histograma de las ventas”)

detach(estudios)

###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).

## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000

y = rnorm(1000,35,2)

hist(y)

qy = quantile(y,probs=c(0.025,0.975))

hist(y,freq=F)

abline(v=qy,col=2)

lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.

## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y  s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.

plot.m = function(n,m,s) {

  y = rnorm(n,m,s)

  qy = quantile(y,probs=c(0.025,0.975))

  hist(y,freq=F)

  abline(v=qy,col=2)

  lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.

  mean(y)

}

## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)

plot.m(10000,100,15)

###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)

##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.

n=10000; m=100;s=15

I = 1000 ###”I” son las iteraciones

medias = numeric(I)

for(i in 1:I)           {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)

  sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.

  medias[i]=mean(sam)   } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).

###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular  1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.

## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)

###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).

sd(medias)     ### desviación de la distribución de las medias

(ee = s/sqrt(n)  )### equivalencia teórica

## COMPARAR LA DISTRIBUCIÓN DE MEDIAS

m

mean(medias)

## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR

hist(medias)

qm = quantile(medias,probs=c(0.025,0.975))

hist(medias,freq=F)

abline(v=qm,col=2)

lines(density(medias),col=2)

## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO

attach(estudios)

### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva

n = length(ventas) ###Cardinalidad o módulo del conjunto de datos

t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl

###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).

###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)

###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/

###”n-1″ son los grados de libertad de la distribución t de student.

#### Error Estándar

ee = sd(ventas)/sqrt(n)

### Intervalo

mean(ventas)-t*ee

mean(ventas)+t*ee

mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.

## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X

ic = function(x,p) {

  n = length(x)

  t = qt(p+((1-p)/2),n-1)

  ee = sd(x)/sqrt(n)

  mean(x)+c(-1,1)*t*ee

}

###Intervalo de 95% confianza para ventas

ic(ventas,0.95)

ic(ventas,0.99)

###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.

ic(ipc,0.95)

ic(menor16,0.95)

## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA

t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.

### Realizando manualmente el cálculo anterior:

(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.

2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.

2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.

###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/

## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)

(ipc1 = 1*(ipc<17)+2*(ipc>=17))

ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))

plot(ipc2,ipc)

abline(h=17,col=2)

## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT

library(gplots)

plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)

boxplot(ventas~ipc2)

## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17

(med = tapply(ventas,ipc1,mean))

(dev = tapply(ventas,ipc1,sd))

(var = tapply(ventas,ipc1,var))

(n   = table(ipc1))

dif=med[1]-med[2]

###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)

varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17

e.e=sqrt((varpond/n[1])+(varpond/n[2]))

dif/e.e

t.test(ventas~ipc1,var.equal=T)

t.test(ventas~ipc1)  #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)

e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))

dif/e.e2

a=((var[1]/n[1]) + (var[2]/n[2]))^2

b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))

(glmod=a/b)

t.test(ventas~ipc1,var.equal=F)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).

###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.

## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA

(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).

pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.

###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).

(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.

###Realizando de forma automatizada el procedimiento anterior:

var.test(ventas~ipc1)

detach(estudios)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.

## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)

attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.

plot(extra ~ group)

plotmeans(extra ~ group,connect=F)  ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).

A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).

B = sleep[sleep$group == 2,]

plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1

Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)

lines(B$extra,col=”blue”)

legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)

t.test(A$extra,B$extra)

t.test(A$extra,B$extra,paired=T)

t.test(A$extra-B$extra,mu=0)

###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.

###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`

## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)

library(pwr) ###”pwr” es una base de datos nativa de R

delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)

s=10.2 ###Desviación estándar muestral

(d=delta/s) #Tamano del efecto.

pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)

## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9

(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))

potencia$d*s  #Delta

## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA

s=10.2

deltas=seq(2,6,length=30)

n=numeric(30)

for(i in 1:30) {

  (d[i]=deltas[i]/s)

  w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)

  n[i]=w$n

}

plot(deltas,n,type=”l”)

## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS

s2p=290.9  ###Varianza ponderada de los dos grupos

(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos

delta=15

(d=delta/sp)

pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)

ANÁLISIS TEÓRICO DE LA FUNCIÓN CUANTIL EN R STUDIO

isadore nabi

Se sabe que la sintaxis qnorm(p, mean = 0, sd = 1, lower.tail = TRUE or FALSE, log.p = TRUE or FALSE) es para calcular una probabilidad p de una distribución normal estándar con media m=0 y error estándar de s=1. Sabemos también que la función cuantil está asociada con una distribución de probabilidad de una variable aleatoria y que especifica el valor de la variable aleatoria de manera que la probabilidad de que la variable sea menor o igual a ese valor es igual a la probabilidad dada (que en la sintaxis de R se designa como p); cabe mencionar que también se llama función de punto porcentual o función de distribución acumulativa inversa. Según la documentación de R sobre la sintaxis, su componente “lower.tail = TRUE or FALSE” menciona que “logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x]”, lo que implicaría, dado todo lo anterior, que esa sintaxis (utilizada con la configuración inicial – lower.tail = TRUE-) calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.

Así, la función cuantil es la función inversa de la función de distribución acumulada y es de importancia fundamental en las Probabilidades y la Estadística porque en ocasiones no es posible definir la función de distribución acumulada, entonces se trabaja con su inversa. En términos más intuitivos, la función de distribución acumulada  permite conocer la probabilidad de que la variable aleatoria X tome un valor menor o igual a un valor especificado , mientras que la función cuantil muestra sintéticamente (mediante el análisis del valor umbral que arroja) la cantidad de valores que se encuentran por debajo del umbral (incluyendo al umbral, es decir, P[X ≤ x]) y cuáles son estos valores; evidentemente la relación anterior se puede invertir y hablar de los que se encuentren por encima del valor umbral (sin incluir al umbral, es decir, P[X > x]), todo depende de las necesidades del investigador y del planteamiento teórico del problema.

Finalmente, si se utiliza la sintaxis de R “qK(c, …)” (siendo K cualquier función de distribución) se están calculando los intervalos de confianza con la función cuantil y no con la función de distribución acumulada, para garantizarte que siempre sea posible realizar tal cálculo, en caso la función de distribución acumulada no exista, trabajando con su función inversa.

Por ejemplo, la función percentil sirve para responder a preguntas como  “¿Cuál es la nota en la cual se acumula el 78.5% de los estudiantes?”. Por supuesto, la pregunta no habla de en qué sentido se acumula esa proporción de los estudiantes ni especifica si se incluye el punto alrededor del cual se acumula tal proporción de estudiantes. Para el caso en que la pregunta  “cuál es la nota debajo de la cual está el x porcentaje de los alumnos” y se respondería en sus dos sentidos de la siguiente manera (si se define x = rnorm):

qnorm(0.7850824,72,15.2) = 84, que será inicialmente P[X ≤ x]. Aquí, el 78.5% de los estudiantes tienen una nota menor o igual a 84.

qnorm(0.7850824,72,15.2,lower.tail = F) = 60, que la configuración personalizada para obtener el complemento de probabilidad P[X > x]. Aquí, el 78.5% de los estudiantes tienen una nota mayor que 60.

Figura 1

Además, puede verse que el valor umbral para el cual se cumple que P [X ≤ x] es igual al valor umbral  (1-P) [X > x] o, lo que es lo mismo, el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (incluyendo el umbral en cuestión) es igual al valor umbral por encima del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción complementaria (1-P) de las ocasiones (sin incluir el umbral en cuestión).

Figura 2