INTRODUCCIÓN A LOS ENSAYOS CLÍNICOS DESDE LA TEORÍA ESTADÍSTICA Y RSTUDIO: ASOCIACIÓN Y CORRELACIÓN DE PEARSON, SPEARMAN Y KENDALL

isadore NABI

### DISTRIBUCIÓN CHI-CUADRADO

###ORÍGENES HISTÓRICOS Y GENERALIDADES: https://marxianstatistics.com/2021/09/10/generalidades-sobre-la-prueba-chi-cuadrado/

###En su forma general, la distribución Chi-Cuadrado es una suma de los cuadrados de variables aleatorias N(media=0, varianza=1), véase https://mathworld.wolfram.com/Chi-SquaredDistribution.html.

###Se utiliza para describir la distribución de una suma de variables aleatorias al cuadrado. También se utiliza para probar la bondad de ajuste de una distribución de datos, si las series de datos son independientes y para estimar las confianzas que rodean la varianza y la desviación estándar de una variable aleatoria de una distribución normal.

### COEFICIENTES DE CORRELACIÓN

###Coeficiente de Correlación de Pearson (prueba paramétrica): https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php, https://www.wikiwand.com/en/Pearson_correlation_coefficient.

###Coeficiente de Correlación de Spearman (prueba no-paramétrica): https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php, https://www.wikiwand.com/en/Spearman%27s_rank_correlation_coefficient, https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf.

###Coeficiente de Correlación de Kendall (prueba no-paramétrica): https://www.statisticshowto.com/kendalls-tau/, https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535, https://personal.utdallas.edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf, https://www.wikiwand.com/en/Kendall_rank_correlation_coefficient.

####Como se verifica en su forma más general [véase Jeremy M. G. Taylor, Kendall’s and Spearman’s Correlation Coefficient in the Presence of a Blocking Variable, (Biometrics, Vol. 43, No. 2 (Jun., 1987), pp.409-416), p. 409], en presencia de “empates”, conocidos también como “observaciones vinculadas” (del inglés “ties”, que, como se verifica en http://www.statistics4u.com/fundstat_eng/dd_ties.html, significa en el contexto de las estadísticas de clasificación de orden -rank order statistics- la existencia de dos o más observaciones que tienen el mismo valor, por lo que imposibilita la asignación de números de rango únicos), es preferible utilizar el coeficiente de correlación de Spearman rho porque su varianza posee una forma más simple (relacionado con el costo computacional, puesto que la investigación de Jeremy Taylor emplea como herramienta de estadística experimental la metodología Monte Carlo, lo que puede verificarse en https://pdodds.w3.uvm.edu/files/papers/others/1987/taylor1987a.pdf).

### RIESGO RELATIVO

####Como se verifica en https://www.wikiwand.com/en/Odds_ratio, el riesgo relativo (diferente a la razón éxito/fracaso y a la razón de momios) es la proporción de éxito de un evento (o de fracaso) en términos del total de ocurrencias (éxitos más fracasos).

### RAZÓN ÉXITO/FRACASO

####Es el cociente entre el número de veces que ocurre un evento y el número de veces en que no ocurre.

####INTERPRETACIÓN: Para interpretar la razón de ataque/no ataque de forma más intuitiva se debe multiplicar dicha razón Ψ (psi) por el número de decenas necesarias Ξ (Xi) para que la razón tenga un dígito d^*∈N a la izquierda del “punto decimal” (en este caso de aplicación hipotético Ξ=1000), resultando así un escalar real υ=Ψ*Ξ (donde υ es la letra griega ípsilon) con parte entera que se interpreta como “Por cada Ξ elementos de la población de referencia bajo la condición especificada (en este caso, que tomó aspirina o que tomó un placebo) estará presente la característica (u ocurrirá el evento, según sea el caso) en (d^*+h) ocasiones, en donde h es el infinitesimal a la derecha del punto decimal (llamado así porque separa no sólo los enteros de los infinitesimales, sino que a su derecha se encuentra la casilla correspondiente justamente a algún número decimal).

### RAZÓN DE MOMIOS

####DEFÍNICIÓN: Es una medida utilizada en estudios epidemiológicos transversales y de casos y controles, así como en los metaanálisis. En términos formales, se define como la posibilidad que una condición de salud o enfermedad se presente en un grupo de población frente al riesgo que ocurra en otro. En epidemiología, la comparación suele realizarse entre grupos humanos que presentan condiciones de vida similares, con la diferencia que uno se encuentra expuesto a un factor de riesgo (mi) mientras que el otro carece de esta característica (mo). Por lo tanto, la razón de momios o de posibilidades es una medida de tamaño de efecto.

####Nótese que es un concepto, evidentemente, de naturaleza frecuentista.

####La razón de momios es el cociente entre las razones de ocurrencia/no-ocurrencia de los tratamientos experimentales estudiados (una razón por cada uno de los dos tratamientos experimentales sujetos de comparación).

### TAMAÑO DEL EFECTO

####Defínase tamaño del efecto como cualquier medida realizada sobre algún conjunto de características (que puede ser de un elemento) relativas a cualquier fenómeno, que es utilizada para abordar una pregunta de interés, según (Kelly y Preacher 2012, 140). Tal y como ellos señalan, la definición es más que una combinación de “efecto” y “tamaño” porque depende explícitamente de la pregunta de investigación que se aborde. Ello significa que lo que separa a un tamaño de efecto de un estadístico de prueba (o estimador) es la orientación de su uso, si responde una pregunta de investigación en específico entonces el estadístico (o parámetro) se convierte en un “tamaño de efecto” y si sólo es parte de un proceso global de predicción entonces es un estadístico (o parámetro) a secas, i.e., su distinción o, expresado en otros términos, la identificación de cuándo un estadístico (o parámetro) se convierte en un tamaño de efecto, es una cuestión puramente epistemológica, no matemática. Lo anterior simplemente implica que, dependiendo del tipo de pregunta que se desee responder el investigador, un estadístico (o parámetro) será un tamaño de efecto o simplemente un estadístico (o parámetro) sin más.

setwd(“C:/Users/User/Desktop/Carpeta de Estudio/Maestría Profesional en Estadística/Semestre II-2021/Métodos, Regresión y Diseño de Experimentos/2/Laboratorios/Laboratorio 2”)

## ESTIMAR EL COEFICIENTE DE CORRELACIÓN DE PEARSON ENTRE TEMPERATURA Y PORCENTAJE DE CONVERSIÓN

###CÁLCULO MANUAL DE LA COVARIANZA

prom.temp = mean(temperatura)

prom.conversion = mean(porcentaje.conversion)

sd.temp = sd(temperatura)

sd.conversion = sd(porcentaje.conversion)

n = nrow(vinilacion)

covarianza = sum((temperatura-prom.temp)*(porcentaje.conversion-prom.conversion))/(n-1)

covarianza

###La covarianza es una medida para indicar el grado en el que dos variables aleatorias cambian en conjunto (véase https://www.mygreatlearning.com/blog/covariance-vs-correlation/#differencebetweencorrelationandcovariance).

###CÁLCULO DE LA COVARIANZA DE FORMA AUTOMATIZADA

cov(temperatura,porcentaje.conversion)

###CÁLCULO MANUAL DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

###Véase https://www.wikiwand.com/en/Pearson_correlation_coefficient (9 de septiembre de 2021).

coef.correlacion = covarianza/(sd.temp*sd.conversion)

coef.correlacion

###CÁLCULO AUTOMATIZADO DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

cor(temperatura,porcentaje.conversion) ###Salvo que se especifique lo contrario (como puede verificarse en la librería de R), el coeficiente de correlación calculado por defecto será el de Pearson, sin embargo, se puede calcular también el coeficiente de Kendall (escribiendo “kendall” en la casilla “method” de la sintaxis “cor”) o el de Spearman (escribiendo “spearman” en la casilla “method” de la sintaxis “cor”).

cor(presion,porcentaje.conversion)

###VÍNCULO, SIMILITUDES Y DIFERENCIAS ENTRE CORRELACIÓN Y COVARIANZA

###El coeficiente de correlación está íntimamente vinculado con la covarianza. La covarianza es una medida de correlación y el coeficiente de correlación es también una forma de medir la correlación (que difiere según sea de Pearson, Kendall o Spearman).

###La covarianza indica la dirección de la relación lineal entre variables, mientras que el coeficiente de correlación mide no sólo la dirección sino además la fuerza de esa relación lineal entre variables.

###La covarianza puede ir de menos infinito a más infinito, mientras que el coeficiente de correlación oscila entre -1 y 1.

###La covarianza se ve afectada por los cambios de escala: si todos los valores de una variable se multiplican por una constante y todos los valores de otra variable se multiplican por una constante similar o diferente, entonces se cambia la covarianza. La correlación no se ve influenciada por el cambio de escala.

###La covarianza asume las unidades del producto de las unidades de las dos variables. La correlación es adimensional, es decir, es una medida libre de unidades de la relación entre variables.

###La covarianza de dos variables dependientes mide cuánto en cantidad real (es decir, cm, kg, litros) en promedio covarían. La correlación de dos variables dependientes mide la proporción de cuánto varían en promedio estas variables entre sí.

###La covarianza es cero en el caso de variables independientes (si una variable se mueve y la otra no) porque entonces las variables no necesariamente se mueven juntas (por el supuesto de ortogonalidad entre los vectores, que expresa geométricamente su independencia lineal). Los movimientos independientes no contribuyen a la correlación total. Por tanto, las variables completamente independientes tienen una correlación cero.

## CREAR UNA MATRIZ DE CORRELACIONES DE PEARSON Y DE SPEARMAN

####La vinilación de los glucósidos se presenta cuando se les agrega acetileno a alta presión y alta temperatura, en presencia de una base para producir éteres de monovinil.

###Los productos de monovinil éter son útiles en varios procesos industriales de síntesis.

###Interesa determinar qué condiciones producen una conversión máxima de metil glucósidos para diversos isómeros de monovinil.

cor(vinilacion) ###Pearson

cor(vinilacion, method=”spearman”) ###Spearman

## CREAR UNA MATRIZ DE VARIANZAS Y COVARIANZAS (LOCALIZADAS ESTAS ÚLTIMAS EN LA DIAGONAL PRINCIPAL DE LA MATRIZ)

cov(vinilacion)

## GENERAR GRÁFICOS DE DISPERSIÓN

plot(temperatura,porcentaje.conversion)

plot(porcentaje.conversion~temperatura)

mod = lm(porcentaje.conversion~temperatura)

abline(mod,col=2)

###La sintaxis “lm” es usada para realizar ajuste de modelos lineales (es decir, ajustar un conjunto de datos a la curva dibujada por un modelo lineal -i.e., una línea recta-, lo cual -si es estadísticamente robusto- implica validar que el conjunto de datos en cuestión posee un patrón de comportamiento geométrico lineal).

###La sintaxis “lm” puede utilizar para el ajuste el método de los mínimos cuadrados ponderados o el método de mínimos cuadrados ordinarios, en función de si la opción “weights” se llena con un vector numérico o con “NULL”, respectivamente).

### La casilla “weights” de la sintaxis “lm” expresa las ponderaciones a utilizar para realizar el proceso de ajuste (si las ponderaciones son iguales para todas las observaciones, entonces el método de mínimos cuadrados ponderados se transforma en el método de mínimos cuadrados ordinarios). Estas ponderaciones son, en términos computacionales, aquellas que minimizan la suma ponderada de los errores al cuadrado.

###Las ponderaciones no nulas pueden user usadas para indicar diferentes varianzas (con los valores de las ponderaciones siendo inversamente proporcionales a la varianza); o, equivalentemente, cuando los elementos del vector de ponderaciones son enteros positivos w_i, en donde cada respuesta y_i es la media de las w_j unidades observacionales ponderadas (incluyendo el caso de que hay w_i observaciones iguales a y_i y los datos se han resumido).

###Sin embargo, en el último caso, observe que no se utiliza la variación dentro del grupo. Por lo tanto, la estimación sigma y los grados de libertad residuales pueden ser subóptimos; en el caso de pesos de replicación, incluso incorrecto. Por lo tanto, los errores estándar y las tablas de análisis de varianza deben tratarse con cuidado.

###La estimación sigma se refiere a la sintaxis “sigma” que estima la desviación estándar de los errores (véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/sigma.html).

###Si la variable de respuesta (o dependiente) es una matriz, un modelo lineal se ajusta por separado mediante mínimos cuadrados a cada columna de la matriz.

###Cabe mencionar que “formula” (la primera entrada de la sintaxis “lm”) tiene un término de intersección implícito (recuérdese que toda ecuación de regresión tiene un intercepto B_0, que puede ser nulo). Para eliminar dicho término, debe usarse y ~ x – 1 o y ~ 0 + x.

plot(presion~porcentaje.conversion)

mod = lm(presion~porcentaje.conversion) ###Ajuste a la recta antes mencionado y guardado bajo el nombre “mod”.

abline(mod,col=2) ###Es crear una línea color rojo (col=2) en la gráfica generada (con la función “mod”)

## REALIZAR PRUEBA DE HIPÓTESIS PARA EL COEFICIENTE DE CORRELACIÓN

###Véase https://opentextbc.ca/introstatopenstax/chapter/testing-the-significance-of-the-correlation-coefficient/, https://online.stat.psu.edu/stat501/lesson/1/1.9,

###Para estar casi seguros (en relación al concepto de convergencia) Para asegurar que existe al menos una leve correlación entre dos variables (X,Y) se tiene que probar que el coeficiente de correlación poblacional (r) no es nulo.

###Para que la prueba de hipótesis tenga validez se debe verificar que la distribución de Y para cada X es normal y que sus valores han sido seleccionados aleatoriamente.

###Si se rechaza la hipótesis nula, no se asegura que haya una correlación muy alta.

###Si el valor p es menor que el nivel de significancia se rechaza la Ho de que el coeficiente de correlación entre Y y X es cero en términos de determinado nivel de significancia estadística.

###Evaluar la significancia estadística de un coeficiente de correlación puede contribuir a validar o refutar una investigación donde este se haya utilizado (siempre que se cuenten con los datos empleados en la investigación), por ejemplo, en el uso de modelos lineales de predicción.

###Se puede utilizar la distribución t con n-2 grados de libertad para probar la hipótesis.

###Como se observará a continuación, además de la forma estándar, también es posible calcular t como la diferencia entre el coeficiente de correlación.

###Si la probabilidad asociada a la hipótesis nula es casi cero, puede afirmarse a un nivel de confianza determinado de que la correlación es altamente significativa en términos estadísticos.

###FORMA MANUAL

ee = sqrt((1-coef.correlacion^2)/(n-2))

t.calculado = (coef.correlacion-0)/ee ###Aquí parece implicarse que el valor t puede calcularse como el cociente entre el coeficiente de correlación muestral menos el coeficiente de correlación poblacional sobre el error estándar de la media.

2*(1-pt(t.calculado,n-2))

###FORMA AUTOMATIZADA

cor.test(temperatura,porcentaje.conversion) ###El valor del coeficiente de correlación que se ha estipulado (que es cero) debe encontrarse dentro del intervalo de confianza al nivel de probabilidad pertinente para aceptar Ho y, caso contrario, rechazarla.

cor.test(temperatura,presion)

###Como se señala en https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/,  calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.

qt(0.975,6)

### EJEMPLO DE APROXIMACIÓN COMPUTACIONAL DE LA DISTRIBUCIÓN t DE STUDENT A LA DISTRIBUCIÓN NORMAL

###El intervalo de confianza se calcula realizando la transformación-z de Fisher (tanto con la función automatizada de R como con la función personalizada elaborada) como a nivel teórico), la cual se utiliza porque cuando la transformación se aplica al coeficiente de correlación muestral, la distribución muestral de la variable resultante es aproximadamente normal, lo que implica que posee una varianza que es estable sobre diferentes valores de la correlación verdadera subyacente (puede ampliarse más en https://en.wikipedia.org/wiki/Fisher_transformation).

coef.correlacion+c(-1,1)*qt(0.975,6)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido como una distribución t de Student.

coef.correlacion+c(-1,1)*qnorm(0.975)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido normalmente.

## CASO DE APLICACIÓN HIPOTÉTICO

###En un estudio sobre el metabolismo de una especie salvaje, un biólogo obtuvo índices de actividad y datos sobre tasas metabólicas para 20 animales observados en cautiverio.

rm(list=ls()) ###Remover todos los objetos de la lista

actividad <- read.csv(“actividad.csv”, sep = “,”, dec=”.”, header = T)

attach(actividad)

n=nrow(actividad)

str(actividad)####”str” es para ver qué tipo de dato es cada variable.

plot(Indice.actividad,Tasa.metabolica)

###Coeficiente de Correlación de Pearson

cor(Indice.actividad,Tasa.metabolica, method=”pearson”)

###Se rechaza la hipótesis nula de que la correlación de Pearson es 0.

###Coeficiente de correlación de Spearman

(corr = cor(Indice.actividad,Tasa.metabolica, method=”spearman”))

(t.s=corr*(sqrt((n-2)/(1-(corr^2)))))

(gl=n-2)

(1-pt(t.s,gl))*2

###Se rechaza la hipótesis nula de que la correlación de Spearman es 0.

###NOTA ADICIONAL:

###Ambas oscilan entre -1 y 1. El signo negativo denota la relacion inversa entre ambas. La correlacion de Pearson mide la relación lineal entre dos variables (correlacion 0 es independencia lineal, que los vectores son ortogonales). La correlación de Pearson es para variables numérica de razón y tiene el supuesto de normalidad en la distribución de los valores de los datos. Cuando los supuestos son altamente violados, lo mejor es usar una medida de correlación no-paramétrica, específicamente el coeficiente de Spearman. Sobre el coeficiente de Spearman se puede decir lo mismo en relación a la asociación. Así, valores de 0 indican correlación 0, pero no asegura que por ser cero las variables sean independientes (no es concluyente).

### TABLAS DE CONTINGENCIA Y PRUEBA DE INDEPENDENCIA

###Una tabla de contingencia es un arreglo para representar simultáneamente las cantidades de individuos y sus porcentajes que se presentan en cada celda al cruzar dos variables categóricas.

###En algunos casos una de las variables puede funcionar como respuesta y la otra como factor, pero en otros casos sólo interesa la relación entre ambas sin intentar explicar la dirección de la relación.

###CASO DE APLICACIÓN HIPOTÉTICO

###Un estudio de ensayos clínicos trataba de probar si la ingesta regular de aspirina reduce la mortalidad por enfermedades cardiovasculares. Los participantes en el estudio tomaron una aspirina o un placebo cada dos días. El estudio se hizo de tal forma que nadie sabía qué pastilla estaba tomando. La respuesta es que si presenta o no ataque cardiaco (2 niveles),

rm(list=ls())

aspirina = read.csv(“aspirina.csv”, sep = “,”, dec=”.”, header = T)

aspirina

str(aspirina)

attach(aspirina)

names(aspirina)

str(aspirina)

View(aspirina)

#### 1. Determinar las diferencias entre la proporción a la que ocurrió un ataque dependiendo de la pastilla que consumió. Identifique el porcentaje global en que presentó ataque y el porcentaje global en que no presentó.

e=tapply(aspirina$freq,list(ataque,pastilla),sum) ###Genera la estructura de la tabla con la que se trabajará (la base de datos organizada según el diseño experimental previamente realizado).

prop.table(e,2) ###Riesgo Relativo columna. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

prop.table(e,1) ###Riesgo Relativo fila. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

(et=addmargins(e)) ###Tabla de contingencia.

addmargins(prop.table(e)) ####Distribución porcentual completa.

###Si se asume que el tipo de pastilla no influye en el hecho de tener un ataque cardíaco, entonces, debería de haber igual porcentaje de ataques en la columna de médicos que tomaron aspirina que en la de los que tomaron placebo.

###Se obtiene el valor esperado de ataques y no ataques.

### Lo anterior se realiza bajo el supuesto de que hay un 1.3% de ataques en general y un 98.7% de no ataques.

#### 2. Usando los valores observados y esperados, calcular el valor de Chi-Cuadrado para determinar si existe dependencia entre ataque y pastilla?

###Al aplicar la distribución Chi cuadrado, que es una distribución continua, para representar un fenómeno discreto, como el número de casos en cada unos de los supuestos de la tabla de 2*2, existe un ligero fallo en la aproximación a la realidad. En números grandes, esta desviación es muy escasa, y puede desecharse, pero cuando las cantidades esperadas en alguna de las celdas son números pequeños- en general se toma como límite el que tengan menos de cinco elementos- la desviación puede ser más importante. Para evitarlo, Yates propuso en 1934 una corrección de los métodos empleados para hallar el Chi cuadrado, que mejora la concordancia entre los resultados del cálculo y la distribución Chi cuadrado. En el articulo anterior, correspondiente a Chi cuadrado,  el calculador expone, además de los resultados de Chi cuadrado, y las indicaciones para decidir, con arreglo a los límites de la distribución para cada uno de los errores alfa admitidos, el rechazar o no la hipótesis nula, una exposición de las frecuencias esperadas en cada una de las casillas de la tabla de contingencia, y la advertencia de que si alguna de ellas tiene un valor inferior a 5 debería emplearse la corrección de Yates. Fuente: https://www.samiuc.es/estadisticas-variables-binarias/valoracion-inicial-pruebas-diagnosticas/chi-cuadrado-correccion-yates/.

###Como se señala en [James E. Grizzle, Continuity Correction in the χ2-Test for 2 × 2 Tables, (The American Statistician, Oct., 1967, Vol. 21, No. 4 (Oct., 1967), pp. 28-32), p. 29-30], técnicamente hablando, la corrección de Yates hace que “(…) las probabilidades obtenidas bajo la distribución χ2 bajo la hipótesis nula converjan de forma más cercana con las probabilidades obtenidas bajo el supuesto de que el conjunto de datos fue generado por una muestra proveniente de la distribución hipergeométrica, i.e., generados bajo el supuesto que los dos márgenes de la tabla fueron fijados con antelación al muestreo.”

###Grizzle se refiere con “márgenes” a los totales de la tabla (véase https://www.tutorialspoint.com/how-to-create-a-contingency-table-with-sum-on-the-margins-from-an-r-data-frame). Además, la lógica de ello subyace en la misma definición matemática de la distribución hipergeométrica. Como se puede verificar en RStudio mediante la sintaxis “?rhyper”, la distribución hipergeométrica tiene la estructura matemática (distribución de probabilidad) p(x) = choose(m, x) choose(n, k-x)/choose(m+n, k), en donde m es el número de éxitos, n es el número de fracasos lo que ) y k es el tamaño de la muestra (tanto m, n y k son parámetros en función del conjunto de datos, evidentemente), con los primeros dos momentos definidos por E[X] = μ = k*p y la varianza se define como Var(X) = k p (1 – p) * (m+n-k)/(m+n-1). De lo anterior se deriva naturalmente que para realizar el análisis estocástico del fenómeno modelado con la distribución hipergeométrica es necesario conocer la cantidad de sujetos que representan los éxitos y los fracasos del experimento (en donde “éxito” y “fracaso” se define en función del planteamiento del experimento, lo cual a su vez obedece a múltiples factores) y ello implica que se debe conocer el total de los sujetos experimentales estudiados junto con su desglose en los términos binarios ya especificados.

###Lo mismo señalado por Grizzle se verifica (citando a Grizzle) en (Biometry, The Principles and Practice of Statistics in Biological Research, Robert E. Sokal & F. James Rohlf, Third Edition, p. 737), especificando que se vuelve innecesaria la corrección de Yates aún para muestras de 20 observaciones.

###Adicionalmente, merece mención el hecho que, como es sabido, la distribución binomial se utiliza con frecuencia para modelar el número de éxitos en una muestra de tamaño n extraída con reemplazo de una población de tamaño N. Sin embargo, si el muestreo se realiza sin reemplazo, las muestras extraídas no son independientes y, por lo tanto, la distribución resultante es una hipergeométrica; sin embargo, para N mucho más grande que n, la distribución binomial sigue siendo una buena aproximación y se usa ampliamente (véase https://www.wikiwand.com/en/Binomial_distribution).

###Grados de libertad correspondientes: número de filas menos 1 por número de columnas menos 1.

###Ho = Hay independencia entre el ataque y las pastillas.

(tabla.freq<-xtabs(freq~ataque+pastilla, data=aspirina))

###La tabla de frecuencias contiene tanto las frecuencias observadas como las esperadas.

###La frecuencia esperada es el conteo de observaciones que se espera en una celda, en promedio, si las variables son independientes.

###La frecuencia esperada de una variable se calcula como el producto entre el cociente [(Total de la Columna j)/(Total de Totales)]*(Total Fila i).

###PRUEBA CHI-CUADRADO AUTOMATIZADA

(prueba.chi<-chisq.test(tabla.freq,correct=F) ) ###La sintaxis “chisq.test” sirve para realizar la prueba de Chi-Cuadrado en tablas de contingencia y para realizar pruebas de bondad de ajuste.

names(prueba.chi)

###PRUEBA CHI-CUADRADO PASO A PASO

(esperado<-prueba.chi$expected) ###valores esperados

(observado<-prueba.chi$observed) ###valores observados

(cuadrados<-(esperado-observado)^2/esperado)

(chi<-sum(cuadrados))

1-pchisq(chi,1) ###Valor de p de la distribución Chi-Cuadrado (especificada mediante el conjunto de datos) calculado de forma no-automatizada.

###Si el valor p es mayor que el nivel de significancia se falla en rechazar Ho, si es menor se rechaza Ho.

###Se rechaza Ho con un nivel de significancia alfa de 0.05. Puesto que se tiene una probabilidad muy baja de cometer error tipo I, i.e., rechazar la hipótesis nula siendo falsa.

FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE II, CÓDIGO EN R STUDIO CON COMENTARIOS

ISADORE NABI

##ESTABLECER EL DIRECTORIO DE TRABAJO

setwd(“(…)”)

##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN

###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio. 

###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.

###- ventas= la cantidad de productos vendidos en el último mes.

read.table(“estudios.txt”)

## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS

estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))

names(estudios)

nrow(estudios)

ncol(estudios)

dim(estudios)

## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”

str(estudios)

attach(estudios)

ventas

###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.

###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)

## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO

mean(ventas)

sd(ventas)

var(ventas)

apply(estudios,2,mean)

apply(estudios,2,sd)

###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos

###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas

## APLICAR LA FUNCIÓN “quantile”.

quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.

apply(estudios,2,quantile)

###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).

(qv = quantile(ventas,probs=c(0.025,0.975)))

###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).

## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”

hist(ventas)

abline(v=qv,col=2)

###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).

###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas

hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,

     main=”Gráfico

   Histograma de las ventas”)

detach(estudios)

###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).

## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000

y = rnorm(1000,35,2)

hist(y)

qy = quantile(y,probs=c(0.025,0.975))

hist(y,freq=F)

abline(v=qy,col=2)

lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.

## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y  s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.

plot.m = function(n,m,s) {

  y = rnorm(n,m,s)

  qy = quantile(y,probs=c(0.025,0.975))

  hist(y,freq=F)

  abline(v=qy,col=2)

  lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.

  mean(y)

}

## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)

plot.m(10000,100,15)

###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)

##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.

n=10000; m=100;s=15

I = 1000 ###”I” son las iteraciones

medias = numeric(I)

for(i in 1:I)           {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)

  sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.

  medias[i]=mean(sam)   } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).

###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular  1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.

## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)

###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).

sd(medias)     ### desviación de la distribución de las medias

(ee = s/sqrt(n)  )### equivalencia teórica

## COMPARAR LA DISTRIBUCIÓN DE MEDIAS

m

mean(medias)

## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR

hist(medias)

qm = quantile(medias,probs=c(0.025,0.975))

hist(medias,freq=F)

abline(v=qm,col=2)

lines(density(medias),col=2)

## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO

attach(estudios)

### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva

n = length(ventas) ###Cardinalidad o módulo del conjunto de datos

t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl

###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).

###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)

###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/

###”n-1″ son los grados de libertad de la distribución t de student.

#### Error Estándar

ee = sd(ventas)/sqrt(n)

### Intervalo

mean(ventas)-t*ee

mean(ventas)+t*ee

mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.

## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X

ic = function(x,p) {

  n = length(x)

  t = qt(p+((1-p)/2),n-1)

  ee = sd(x)/sqrt(n)

  mean(x)+c(-1,1)*t*ee

}

###Intervalo de 95% confianza para ventas

ic(ventas,0.95)

ic(ventas,0.99)

###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.

ic(ipc,0.95)

ic(menor16,0.95)

## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA

t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.

### Realizando manualmente el cálculo anterior:

(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.

2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.

2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.

###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/

## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)

(ipc1 = 1*(ipc<17)+2*(ipc>=17))

ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))

plot(ipc2,ipc)

abline(h=17,col=2)

## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT

library(gplots)

plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)

boxplot(ventas~ipc2)

## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17

(med = tapply(ventas,ipc1,mean))

(dev = tapply(ventas,ipc1,sd))

(var = tapply(ventas,ipc1,var))

(n   = table(ipc1))

dif=med[1]-med[2]

###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)

varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17

e.e=sqrt((varpond/n[1])+(varpond/n[2]))

dif/e.e

t.test(ventas~ipc1,var.equal=T)

t.test(ventas~ipc1)  #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)

e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))

dif/e.e2

a=((var[1]/n[1]) + (var[2]/n[2]))^2

b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))

(glmod=a/b)

t.test(ventas~ipc1,var.equal=F)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).

###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.

## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA

(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).

pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.

###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).

(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.

###Realizando de forma automatizada el procedimiento anterior:

var.test(ventas~ipc1)

detach(estudios)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.

## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)

attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.

plot(extra ~ group)

plotmeans(extra ~ group,connect=F)  ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).

A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).

B = sleep[sleep$group == 2,]

plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1

Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)

lines(B$extra,col=”blue”)

legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)

t.test(A$extra,B$extra)

t.test(A$extra,B$extra,paired=T)

t.test(A$extra-B$extra,mu=0)

###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.

###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`

## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)

library(pwr) ###”pwr” es una base de datos nativa de R

delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)

s=10.2 ###Desviación estándar muestral

(d=delta/s) #Tamano del efecto.

pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)

## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9

(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))

potencia$d*s  #Delta

## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA

s=10.2

deltas=seq(2,6,length=30)

n=numeric(30)

for(i in 1:30) {

  (d[i]=deltas[i]/s)

  w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)

  n[i]=w$n

}

plot(deltas,n,type=”l”)

## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS

s2p=290.9  ###Varianza ponderada de los dos grupos

(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos

delta=15

(d=delta/sp)

pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)

MODELO LOGIT O REGRESIÓN LOGÍSTICA

ISADORE NABI

Como se señala en (Aldrich & Nelson, 1984, págs. 30-31), la inferencia estadística comienza por asumir que el modelo que se va a estimar y utilizar para hacer inferencias está correctamente especificado. La presunción, i.e., el supuesto de partida, es que la teoría estadística-matemática correspondiente a tal o cual modelo estadístico es la que justifica el uso del mismo. Sin embargo, a lo planteado por los autores hay que agregar que es aún más importante que las propiedades reales del fenómeno a estudiar (establecidas por el marco científico mediante el cual se estudia) deben corresponderse en una magnitud mínima necesaria y suficiente con las propiedades matemáticas de tal o cual modelo estadístico. Los autores señalan que es bastante fácil demostrar que la especificación incorrecta del modelo tiene implicaciones realmente sustanciales, ya que todas las propiedades estadísticas de las estimaciones pueden destruirse. Para decirlo sin rodeos, la especificación incorrecta del modelo conduce a respuestas incorrectas.

Los autores también elaboran una maravilla gnoseológica en su argumentación, relativa a la justificación del difundido uso del supuesto de linealidad, estableciendo una versión modificada de la navaja de Occam, una que no implica reduccionismo filosófico, como sí lo suele ser la que utilizan, por ejemplo, los bayesianos subjetivos en los modelos parsimoniosos (y fue en ese sentido en el que la criticó también Albert Einstein):

“¿Por qué es tan popular la especificación lineal? Hay dos razones básicas (y relacionadas). En la práctica, los modelos lineales son matemáticamente simples, por lo que los estadísticos han podido aprender mucho sobre ellos, y se han escrito programas de computadora para hacer la estimación. Sobre bases teóricas, la simplicidad conduce a su adopción, justificada por una versión de la navaja de Occam: en ausencia de una guía teórica en sentido contrario, comience asumiendo el caso más simple. Así, la Navaja de Occam, por implicación, diría: Con alguna orientación teórica en sentido contrario, no asuma el caso más simple.” (Aldrich & Nelson, 1984, pág. 31).

La investigación completa se facilita en el siguiente documento:

ANÁLISIS DE LA METODOLOGÍA APLICADA POR LOS INSTITUTOS NACIONALES DE ESTADÍSTICA Y CENSOS EN LA CLASIFICACIÓN CUALITATIVA DEL NIVEL DE INGRESO

ISADORE NABI

REFERENCIAS

Aldridge, H. (2017). How do we measure? Toronto: Maytree.

Arias Chavarría, E. (2019). ESTADO, NEOLIBERALISMO Y EMPRESARIOS EN COSTA RICA:LA COYUNTURA DEL TLC. Revista de Ciencias Sociales de la Universidad de Costa Rica, 69-86. Obtenido de https://www.redalyc.org/jatsRepo/153/15360186004/html/index.html

Arias Ramírez, R. (2020). Pobreza y desigualdad en Costa Rica: una mirada más allá de la distribución de los ingresos. Estudios del Desarrollo Social: Cuba y América Latina, 1-26. Obtenido de http://scielo.sld.cu/pdf/reds/v8n1/2308-0132-reds-8-01-16.pdf

autocosts. (6 de Mayo de 2019). Coding rules. Obtenido de GitHub: https://github.com/jfoclpf/autocosts/blob/master/contributing.md

autocosts. (2 de Noviembre de 2020). Core. Obtenido de https://github.com/jfoclpf/autocosts/tree/master/src/client/core

autocosts. (27 de Abril de 2021). Costos de Automóviles de Costa Rica. Obtenido de GitHub: https://autocostos.info/cr/stats

Barría, C. (16 de Mayo de 2019). Cómo Costa Rica se convirtió en uno de los países más innovadores de América Latina (y cuáles son algunos de los inventos más sorprendentes). Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-48193736

Baumol, W. (1983). Marx and the Iron Law of Wages. The American Economic Review, 303-308.

Blanchard, O., & Leigh, D. (2013). Growth Forecast Errors and Fiscal Multipliers. Washington: International Monetary Fund. Obtenido de https://www.imf.org/external/pubs/ft/wp/2013/wp1301.pdf

Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (Novena ed.). Boston: Cengage Learning.

Case, K., Fair, R., & Oster, S. (2012). Principles of Economics (Décima ed.). Boston: Pearson Education.

Cisneros, M. F. (29 de Mayo de 2016). ¿Carro nuevo o usado? Esto es lo que le ofrecen las entidades financieras? Obtenido de FINANZAS: https://www.elfinancierocr.com/finanzas/carro-nuevo-o-usado-esto-es-lo-que-le-ofrecen-las-entidades-financieras/FFPKCXEYYBB4BGAQ7GFRK3GNUU/story/

Cisneros, M. F. (21 de Febrero de 2020). ¿Quiere comprar una casa? Deberá pagar al menos ¢7.000 por cada millón que le financien. Obtenido de El Financiero: https://www.elfinancierocr.com/finanzas/quiere-comprar-una-casa-debera-pagar-al-menos/7EXHTMCZ2RESBERYYQW4JQZYCQ/story/

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Delgado Jiménez, F. (2013). EL EMPLEO INFORMAL EN COSTA RICA: CARACTERÍSTICAS DE LOS OCUPADOS Y SUS PUESTOS DE TRABAJO. Ciencias Económicas, XXXI(2), 35-51.

Díaz Arias, D. (2019). Historia del neoliberalismo en Costa Rica. Avances de Investigación CIHAC, 1-45. Obtenido de https://cihac.fcs.ucr.ac.cr/wp-content/uploads/2019/08/David-Diaz-Historia-del-Neoliberalismo-CIHAC.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Encyclopaedia Britannica. (27 de Abril de 2021). Iron Law of Wages. Obtenido de Economics: https://www.britannica.com/topic/Iron-Law-of-Wages

Expatistan. (27 de Abril de 2021). ¿Cómo funcionan el índice y las comparaciones? Obtenido de https://www.expatistan.com/es/como-funciona

Expatistan. (Abril de 2021). Costo de vida en San Jose, Costa Rica, Costa Rica. Obtenido de https://www.expatistan.com/es/costo-de-vida/san-jose-costa-rica

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Foro Económico Mundial. (12 de Abril de 2019). 50 years of US wages, in one chart. Obtenido de https://www.weforum.org/agenda/2019/04/50-years-of-us-wages-in-one-chart/

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación Promotora de Vivienda. (28 de Abril de 2021). Informe Nacional. Situación de Vivienda y Desarrollo Urbano 2016. Obtenido de https://www.fuprovi.org/wp-content/uploads/2018/02/situacion-del-sector-vivienda-y-desarrollo-urbano-costa-rica-2016.pdf

Hidalgo Víquez, C., Andrade Pérez, L., Rodríguez Gonzáles, S., Dumani Echandi, M., Alvarado Molina, N., Cerdas Nuñez, M., & Quirós Blanco, G. (2020). Análisis de la canasta básica alimentaria de Costa Rica: oportunidades desde la alimentación y nutrición. Población y Salud en Mesoamérica, 1-24. Obtenido de https://revistas.ucr.ac.cr/index.php/psm/article/view/40822/42616

i-base. (27 de Abril de 2021). Diet: a balanced diet and your health. Obtenido de GUIDES: https://i-base.info/guides/side/diet-a-balanced-diet-and-your-health

Instituto Nacional de Estadística y Censos de Costa Rica. (2010). Actualización metodológica para la medición del empleo y la pobreza. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documentos/pobreza_y_presupuesto_de_hogares/pobreza/metodologias/documentos_metodologicos/mepobrezaenaho2010-02.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre gastos de los hogares. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-gasto.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Coeficiente de Gini por hogar y per cápita, julio 2010 – 2020. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/repobrezaenaho2010-2020-01_gini.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Nivel de pobreza por LP según características de los hogares y las personas, julio 2019 y julio 2020. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenaho2020-linea_de_pobreza.xlsx

Jaccard, N. (29 de Septiembre de 2013). ¿Cómo es ser pobre en Suiza? Obtenido de Revista Semana: https://www.semana.com/mundo/articulo/suiza-ser-probre/359491-3/

Kleiber, C. (2007). The Lorenz curve in economics and econometrics. University of Basel. Basel: Center of Business and Economics. Obtenido de https://www.econstor.eu/bitstream/10419/123375/1/wp2007-09.pdf

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Obtenido de https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Laplante, P. A. (2001). DICTIONARY OF COMPUTER SCIENCE, ENGENEERING AND TECHNOLOGY. Boca Ratón, Florida, Estados Unidos: CRC Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

Madrigal, L. M. (5 de Diciembre de 2018). Hacienda revela identidad de grandes empresas que reportan cero ganancias reiteradamente. Obtenido de DELFINO: https://delfino.cr/2018/12/hacienda-revela-identidad-de-grandes-empresas-que-reportan-cero-ganancias-reiteradamente

Messina, J., & Silva, J. (2019). Twenty Years of Wage Inequality in Latin America. Washington: Inter-American Development Bank.

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Online Currency Converter. (27 de Abril de 2021). Swiss franc (CHF) and United States dollar (USD) Year 2013 Exchange Rate History. Source: CBR. Obtenido de https://freecurrencyrates.com/en/exchange-rate-history/CHF-USD/2013/cbr

preciosmundi. (Abril de 2021). Precios de ropa y calzado en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-ropa-calzado

preciosmundi. (Abril de 2021). Precios de transportes y servicios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-transporte-servicios

preciosmundi. (Abril de 2021). Precios de vivienda y salarios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-vivienda-salarios

preciosmundi. (Abril de 2021). Precios en supermercados en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precios-supermercado

PROGRAMA ESTADO DE LA NACIÓN. (2018). ESTADO DE LA NACIÓN EN DESARROLLO HUMANO SOSTENIBLE. Pavas: Consejo Nacional de Rectores de Costa Rica (CONARE). Obtenido de http://www.asamblea.go.cr/sd/Documents/analisis/Inforne%20Estado%20de%20%20La%20Naci%C3%B3n%202018.pdf

Quirós, M. (17 de Junio de 2017). La vivienda en alquiler: la realidad y los retos. Obtenido de El Financiero: https://www.elfinancierocr.com/opinion/la-vivienda-en-alquiler-la-realidad-y-los-retos/LJCFGLYCXNHL3H2VWGGCK5K4UI/story/

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Salazar Álvarez, G. (7 de Noviembre de 2018). Inflación y costo de vida en la Costa Rica actual. Obtenido de elmundo.cr: https://www.elmundo.cr/economia-y-negocios/inflacion-y-costo-de-vida-en-la-costa-rica-actual/

Seixo, N. (28 de Abril de 2021). ransiciones de la Edad Media a la Edad ModernaRecensión de El debate Brenner. Estructura de clases agraria y desarrollo económico en la Europa preindustrial. Obtenido de http://www.uned-historia.es/sites/default/files/Apuntes/Nacho%20Seixo%20-%20Transiciones%20de%20la%20Edad%20Media%20a%20la%20Edad%20Moderna.pdf

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Obtenido de https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

Vargas Solís, L. P. (2016). El Proyecto Histórico Neoliberal en Costa Rica (1984-2015): Devenir histórico y crisis. Revista Rupturas, 147-162. doi:https://doi.org/10.22458/rr.v1i1.1167

Ventas, L. (5 de Febrero de 2018). ¿Es Costa Rica realmente tan “pura vida”? Las heridas ocultas tras la fachada de país próspero y estable. Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-america-latina-42879401

Weisstein, E. (22 de Abril de 2021). Lorenz Curve. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/LorenzCurve.html

Wikipedia. (10 de Abril de 2021). Gini coefficient. Obtenido de Income inequality metrics: https://en.wikipedia.org/wiki/Gini_coefficient

Wikipedia. (27 de Febrero de 2021). Lorenz curve. Obtenido de Economic curves: https://en.wikipedia.org/wiki/Lorenz_curve

World Health Organization. (29 de Abril de 2020). Salt reduction. Obtenido de Fact sheets: https://www.who.int/news-room/fact-sheets/detail/salt-reduction

SOBRE LA CREACIÓN Y DESTRUCCIÓN DE VALOR EN LOS SISTEMAS DE ECONOMÍA POLÍTICA CAPITALISTA EN PARTICULAR Y EN LOS SISTEMAS ECONÓMICOS EN GENERAL

ISADORE NABI

REFERENCIAS

Alan. (25 de Julio de 2011). ENGLISH LENGUAGE & USAGE. Obtenido de Stack Exchange: https://english.stackexchange.com/questions/35508/difference-between-partly-and-partially#:~:text=Use%20partly%20when%20the%20%22in,it’s%20also%20%22partly%20closed%22.

Andrews, D. W. (1991). An Empirical Process Central Limit Theorem for Dependent Non-identically Distributed Random Variables . Journal of Multivariate Analysis, 187-203.

Berk, K. (1973). A CENTRAL LIMIT THEOREM FOR m-DEPENDENT RANDOM VARIABLES WITH UNBOUNDED m. The Annals of Probability, 1(2), 352-354.

Borisov, E. F., & Zhamin, V. A. (2009). Diccionario de Economía Política. (L. H. Juárez, Ed.) Nueva Guatemala de la Asunción, Guatemala, Guatemala: Tratados y Manuales Grijalbo.

Cockshott, P., & Cottrell, A. (2005). Robust correlations between prices and labor values. Cambridge Journal of Economics, 309-316.

Cockshott, P., Cottrell, A., & Valle Baeza, A. (2014). The Empirics of the Labour Theory of Value: Reply to Nitzan and Bichler. Investigación Económica, 115-134.

Cockshott, P., Cottrell, A., & Zachariah, D. (29 de Marzo de 2019). Against the Kliman theory. Recuperado el 22 de Marzo de 2021, de Paul Cockshott: http://paulcockshott.co.uk/publication-archive/Talks/politicaleconomy/Against%20the%20Kliman%20price%20theory.pdf

Dedecker, J., & Prieur, C. (2007). An empirical central limit theorem for dependent sequences. Stochastic Processes and their Applications, 117, 121-142.

Díaz, E., & Osuna, R. (2007). Indeterminacy in price–value correlation measures. Empirical Economics, 389-399.

Emmanuel, A. (1972). El Intercambio Desigual. Ensayo sobre los antagonismos en las relaciones económicas internacionales. México, D.F.: Sigloveintiuno editores, s.a.

Farjoun, E., & Marchover, M. (1983). Laws of Chaos. A Probabilistic Approach to Political Economy. Londres: Verso Editions and NLB.

fast.ai. (3 de Diciembre de 2017). How to calculate Weighted Mean Absolute Error (WMAE)? Obtenido de Forums: https://forums.fast.ai/t/how-to-calculate-weighted-mean-absolute-error-wmae/8575

Flaschel, P., & Semmler, W. (1985). The Dynamic Equalization of Profit Rates for Input-Output Models with Fixed Capital. En Varios, & W. Semmler (Ed.), Competition, Instability, and Nonlinear Cycles (págs. 1-34). New York: Springer-Verlag.

Flores Morador, F. (2013). Marx and the Moral Depreciation of Technology: Labor Value as Information. Social Science Research Network Electronic Journal, 1-16. Obtenido de https://internt.ht.lu.se/media/documents/project-778/Marx_and_the_moral_depreciation_of_technology.pdf

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Glick, M., & Ehrbar, H. (1988). Profit Rate Equalization in the U.S. and Europe: An Econometric Investigation. European Journal of Political Economy, 179-201.

Gloria-Palermo, S. (2010). Introducing Formalism in Economics: The Growth Model of John von Neumann. Panoeconomicus, 153-172.

Godwin, H., & Zaremba, S. (1961). A Central Limit Theorem for Partly Dependent Variables. The Annals of Mathematical Statistics, 32(3), 677-686.

Guerrero, D. (Octubre-diciembre de 1997). UN MARX IMPOSIBLE: EL MARXISMO SIN TEORÍA LABORAL DEL VALOR. 57(222), 105-143.

Investopedia. (23 de Agosto de 2020). The Difference Between Standard Deviation and Average Deviation. Obtenido de Advanced Technical Analysis Concepts : https://www.investopedia.com/ask/answers/021215/what-difference-between-standard-deviation-and-average-deviation.asp

Kliman, A. (2002). The law of value and laws of statistics: sectoral values and prices in the US economy, 1977-97. Cambridge Journal of Economics, 299-311.

Kliman, A. (2005). Reply to Cockshott and Cottrell. Cambridge Journal of Economics, 317-323.

Kliman, A. (2014). What is spurious correlation? A reply to Díaz and Osuna. Journal of Post Keynesian Economics, 21(2), 345-356.

KO, M.-H., RYU, D.-H., KIM, T.-S., & CHOI, Y.-K. (2007). A CENTRAL LIMIT THEOREM FOR GENERAL WEIGHTED SUMS OF LNQD RANDOM VARIABLES AND ITS APPLICATION. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 37(1), 259-268.

Kuhn, T. (2011). La Estructura de las Revoluciones Científicas. México, D.F.: Fondo de Cultura Económica.

Kuroki, R. (1985). The Equalizartion of the Rate of Profit Reconsidered. En W. Semmler, Competition, Instability, and Nonlinear Cycles (págs. 35-50). New York: Springer-Velag.

Landau, L. D., & Lifshitz, E. M. (1994). Curso de Física Teórica. Mecánica (Segunda edición corregida ed.). (E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Leontief, W. (1986). Input-Output Economics. Oxford, United States: Oxford University Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

LI, X.-p. (2015). A Central Limit Theorem for m-dependent Random Variables under Sublinear Expectations. Acta Mathematicae Applicatae Sinica, 31(2), 435-444. doi:10.1007/s10255-015-0477-1

Marquetti, A., & Foley, D. (25 de Marzo de 2021). Extended Penn World Tables. Obtenido de Extended Penn World Tables: Economic Growth Data assembled from the Penn World Tables and other sources : https://sites.google.com/a/newschool.edu/duncan-foley-homepage/home/EPWT

Marx, K. H. (1989). Contribución a la Crítica de la Economía Política. (M. Kuznetsov, Trad.) Moscú: Editorial Progreso.

Marx, K. H. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Mindrila, D., & Balentyne, P. (2 de Febrero de 2021). Scatterplots and Correlation. Obtenido de University of West Georgia: https://www.westga.edu/academics/research/vrc/assets/docs/scatterplots_and_correlation_notes.pdf

Mora Osejo, L. (1 de Enero de 1992). Reseñas y Comentarios. John von Neumann and Modern Economics. Goodwin, Dore, Chakavarty. Cuadernos de Economía, 12(17), 215-221. Obtenido de https://revistas.unal.edu.co/index.php/ceconomia/article/view/19349/20301

Moseley, F. (2015). Money and Totality. Leiden, South Holland, Netherlands: BRILL.

Nabi, I. (2020). SOBRE LA LEY DE LA TENDENCIA DECRECIENTE DE LA TASA MEDIA DE GANANCIA. Raíces Unitarias y No Estacionariedad de las Series de Tiempo. Documento Inédito. Obtenido de https://marxianstatistics.files.wordpress.com/2020/12/analisis-del-uso-de-la-prueba-de-hipotesis-en-el-contexto-de-la-especificacion-optima-de-un-modelo-de-regresion-isadore-nabi-2.pdf

Nabi, I. (2021). Lecciones de Gnoseología Marxiana I. Documento Inédito. Obtenido de https://marxianstatistics.com/2021/04/09/lecciones-de-gnoseologia-marxiana-i-lessons-of-marxian-gnoseology-i/

NABI, I. (1 de Abril de 2021). SOBRE LA METODOLOGÍA DEL U.S. BUREAU OF ECONOMIC ANALYSIS PARA LA REDEFINICIÓN Y REASIGNACIÓN DE PRODUCTOS EN LA MATRIZ INSUMO-PRODUCTO DE ESTADOS UNIDOS. Obtenido de ECONOMÍA POLÍTICA: https://marxianstatistics.com/2021/04/01/sobre-la-metodologia-del-u-s-bureau-of-economic-analysis-para-la-redefinicion-y-reasignacion-de-productos-en-la-matriz-insumo-producto-de-estados-unidos/

NABI, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de EL BLOG DE ISADORE NABI: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

OECD. (25 de Septiembre de 2005). SCRAPPING. Obtenido de GLOSSARY OF STATISTICAL TERMS: https://stats.oecd.org/glossary/detail.asp?ID=2395

Parzen, E. (1957). A Central Limit Theorem for Multilinear Stochastic Processes. The Annals of Mathematical Statistics, 28(1), 252-256.

Pasinetti, L. (1984). Lecciones Sobre Teoría de la Producción. (L. Tormo, Trad.) México, D.F.: Fondo de Cultura Económica.

Real Academia Española. (18 de 03 de 2021). Diccionario de la lengua española. Obtenido de Edición del Tricentenario | Actualización 2020: https://dle.rae.es/transitar?m=form

Real Academia Española. (23 de Marzo de 2021). Diccionario de la lengua española. Obtenido de Edición Tricentenario | Actualización 2020: https://dle.rae.es/ecualizar?m=form

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Sánchez, C. (Diciembre de 2013). Inconsistencia de la teoría neoclásica: aplicación del análisis dimensional a la economía. ECONOMÍA HOY, 4-6. Obtenido de https://www.uca.edu.sv/economia/wp-content/uploads/012-ECONOMIA-HOY-A-DIC2013.pdf

Sánchez, C., & Ferràndez, M. N. (Octubre-diciembre de 2010). Valores, precios de producción y precios de mercado a partir de los datos de la economía española. Investigación Económica, 87-118. Obtenido de https://www.jstor.org/stable/42779601?seq=1

Sánchez, C., & Montibeler, E. E. (2015). La teoría del valor trabajo y los precios en China. Economia e Sociedade, 329-354.

StackExchange. (12 de Enero de 2014). Mean absolute deviation vs. standard deviation. Obtenido de Cross Validated: https://stats.stackexchange.com/questions/81986/mean-absolute-deviation-vs-standard-deviation

Steedman, I., & Tomkins, J. (1998). On measuring the deviation of prices from values. Cambridge Journal of Economics, 379-385.

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Domestic Supply of Commodities by Industries (Millions of dollars). Obtenido de Input-Output Accounts Data | Data Files. Supply Tables – Domestic supply of commodities by industry ● 1997-2019: 15 Industries iTable, 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&isuri=1&table_list=3&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Domestic Supply of Commodities by Industries (Millions of dollars). Obtenido de Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Make Tables/After Redefinitions – Production of commodities by industry after redefinition of secondary production ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=5&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Use of Commodities by Industries. Obtenido de Input-Output Accounts Data | Data Files. Use Tables – Use of commodities by industry ● 1997-2019: 15 Industries iTable, 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=52&step=102&isuri=1&table_list=4&aggregation=sum

U.S. Bureau of Economic Analysis. (1 de Abril de 2021). The Use of Commodities by Industries. Obtenido de Input-Output Accounts Data | Supplemental Estimate Tables. After Redefinition Tables. Use Tables/After Redefinitions/Producer Value – Use of commodities by industry after reallocation of inputs ● 1997-2019: 71 Industries iTable: https://apps.bea.gov/iTable/iTable.cfm?reqid=58&step=102&isuri=1&table_list=6&aggregation=sum

Valle Baeza, A. (1978). Valor y Precios de Producción. Investigación Económica, 169-203.

Walras, L. (1954). Elements of Pure Economics or The Theory of Social Wealth. (W. Jaffé, Trad.) Homewood, Ilinois, Estados Unidos: Richard D. Irwin, Inc.

Wikipedia. (25 de Enero de 2021). Trabajo (física). Obtenido de Magnitudes termodinámicas: https://es.wikipedia.org/wiki/Trabajo_(f%C3%ADsica)

Wikipedia. (17 de Marzo de 2021). Work (physics). Obtenido de Energy (physics): https://en.wikipedia.org/wiki/Work_(physics)

Wooldridge, J. M. (2010). Introducción a la Econometría. Un Enfoque Moderno (Cuarta ed.). México, D.F.: Cengage Learning.

Zachariah, D. (Junio de 2006). Labour value and equalisation of profit rates: a multi-country study. Indian Development Review, 4, 1-20.