INTRODUCCIÓN A LOS ENSAYOS CLÍNICOS DESDE LA TEORÍA ESTADÍSTICA Y RSTUDIO: ASOCIACIÓN Y CORRELACIÓN DE PEARSON, SPEARMAN Y KENDALL

isadore NABI

### DISTRIBUCIÓN CHI-CUADRADO

###ORÍGENES HISTÓRICOS Y GENERALIDADES: https://marxianstatistics.com/2021/09/10/generalidades-sobre-la-prueba-chi-cuadrado/

###En su forma general, la distribución Chi-Cuadrado es una suma de los cuadrados de variables aleatorias N(media=0, varianza=1), véase https://mathworld.wolfram.com/Chi-SquaredDistribution.html.

###Se utiliza para describir la distribución de una suma de variables aleatorias al cuadrado. También se utiliza para probar la bondad de ajuste de una distribución de datos, si las series de datos son independientes y para estimar las confianzas que rodean la varianza y la desviación estándar de una variable aleatoria de una distribución normal.

### COEFICIENTES DE CORRELACIÓN

###Coeficiente de Correlación de Pearson (prueba paramétrica): https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php, https://www.wikiwand.com/en/Pearson_correlation_coefficient.

###Coeficiente de Correlación de Spearman (prueba no-paramétrica): https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php, https://www.wikiwand.com/en/Spearman%27s_rank_correlation_coefficient, https://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf.

###Coeficiente de Correlación de Kendall (prueba no-paramétrica): https://www.statisticshowto.com/kendalls-tau/, https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535, https://personal.utdallas.edu/~herve/Abdi-KendallCorrelation2007-pretty.pdf, https://www.wikiwand.com/en/Kendall_rank_correlation_coefficient.

####Como se verifica en su forma más general [véase Jeremy M. G. Taylor, Kendall’s and Spearman’s Correlation Coefficient in the Presence of a Blocking Variable, (Biometrics, Vol. 43, No. 2 (Jun., 1987), pp.409-416), p. 409], en presencia de “empates”, conocidos también como “observaciones vinculadas” (del inglés “ties”, que, como se verifica en http://www.statistics4u.com/fundstat_eng/dd_ties.html, significa en el contexto de las estadísticas de clasificación de orden -rank order statistics- la existencia de dos o más observaciones que tienen el mismo valor, por lo que imposibilita la asignación de números de rango únicos), es preferible utilizar el coeficiente de correlación de Spearman rho porque su varianza posee una forma más simple (relacionado con el costo computacional, puesto que la investigación de Jeremy Taylor emplea como herramienta de estadística experimental la metodología Monte Carlo, lo que puede verificarse en https://pdodds.w3.uvm.edu/files/papers/others/1987/taylor1987a.pdf).

### RIESGO RELATIVO

####Como se verifica en https://www.wikiwand.com/en/Odds_ratio, el riesgo relativo (diferente a la razón éxito/fracaso y a la razón de momios) es la proporción de éxito de un evento (o de fracaso) en términos del total de ocurrencias (éxitos más fracasos).

### RAZÓN ÉXITO/FRACASO

####Es el cociente entre el número de veces que ocurre un evento y el número de veces en que no ocurre.

####INTERPRETACIÓN: Para interpretar la razón de ataque/no ataque de forma más intuitiva se debe multiplicar dicha razón Ψ (psi) por el número de decenas necesarias Ξ (Xi) para que la razón tenga un dígito d^*∈N a la izquierda del “punto decimal” (en este caso de aplicación hipotético Ξ=1000), resultando así un escalar real υ=Ψ*Ξ (donde υ es la letra griega ípsilon) con parte entera que se interpreta como “Por cada Ξ elementos de la población de referencia bajo la condición especificada (en este caso, que tomó aspirina o que tomó un placebo) estará presente la característica (u ocurrirá el evento, según sea el caso) en (d^*+h) ocasiones, en donde h es el infinitesimal a la derecha del punto decimal (llamado así porque separa no sólo los enteros de los infinitesimales, sino que a su derecha se encuentra la casilla correspondiente justamente a algún número decimal).

### RAZÓN DE MOMIOS

####DEFÍNICIÓN: Es una medida utilizada en estudios epidemiológicos transversales y de casos y controles, así como en los metaanálisis. En términos formales, se define como la posibilidad que una condición de salud o enfermedad se presente en un grupo de población frente al riesgo que ocurra en otro. En epidemiología, la comparación suele realizarse entre grupos humanos que presentan condiciones de vida similares, con la diferencia que uno se encuentra expuesto a un factor de riesgo (mi) mientras que el otro carece de esta característica (mo). Por lo tanto, la razón de momios o de posibilidades es una medida de tamaño de efecto.

####Nótese que es un concepto, evidentemente, de naturaleza frecuentista.

####La razón de momios es el cociente entre las razones de ocurrencia/no-ocurrencia de los tratamientos experimentales estudiados (una razón por cada uno de los dos tratamientos experimentales sujetos de comparación).

### TAMAÑO DEL EFECTO

####Defínase tamaño del efecto como cualquier medida realizada sobre algún conjunto de características (que puede ser de un elemento) relativas a cualquier fenómeno, que es utilizada para abordar una pregunta de interés, según (Kelly y Preacher 2012, 140). Tal y como ellos señalan, la definición es más que una combinación de “efecto” y “tamaño” porque depende explícitamente de la pregunta de investigación que se aborde. Ello significa que lo que separa a un tamaño de efecto de un estadístico de prueba (o estimador) es la orientación de su uso, si responde una pregunta de investigación en específico entonces el estadístico (o parámetro) se convierte en un “tamaño de efecto” y si sólo es parte de un proceso global de predicción entonces es un estadístico (o parámetro) a secas, i.e., su distinción o, expresado en otros términos, la identificación de cuándo un estadístico (o parámetro) se convierte en un tamaño de efecto, es una cuestión puramente epistemológica, no matemática. Lo anterior simplemente implica que, dependiendo del tipo de pregunta que se desee responder el investigador, un estadístico (o parámetro) será un tamaño de efecto o simplemente un estadístico (o parámetro) sin más.

setwd(“C:/Users/User/Desktop/Carpeta de Estudio/Maestría Profesional en Estadística/Semestre II-2021/Métodos, Regresión y Diseño de Experimentos/2/Laboratorios/Laboratorio 2”)

## ESTIMAR EL COEFICIENTE DE CORRELACIÓN DE PEARSON ENTRE TEMPERATURA Y PORCENTAJE DE CONVERSIÓN

###CÁLCULO MANUAL DE LA COVARIANZA

prom.temp = mean(temperatura)

prom.conversion = mean(porcentaje.conversion)

sd.temp = sd(temperatura)

sd.conversion = sd(porcentaje.conversion)

n = nrow(vinilacion)

covarianza = sum((temperatura-prom.temp)*(porcentaje.conversion-prom.conversion))/(n-1)

covarianza

###La covarianza es una medida para indicar el grado en el que dos variables aleatorias cambian en conjunto (véase https://www.mygreatlearning.com/blog/covariance-vs-correlation/#differencebetweencorrelationandcovariance).

###CÁLCULO DE LA COVARIANZA DE FORMA AUTOMATIZADA

cov(temperatura,porcentaje.conversion)

###CÁLCULO MANUAL DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

###Véase https://www.wikiwand.com/en/Pearson_correlation_coefficient (9 de septiembre de 2021).

coef.correlacion = covarianza/(sd.temp*sd.conversion)

coef.correlacion

###CÁLCULO AUTOMATIZADO DEL COEFICIENTE DE CORRELACIÓN DE PEARSON

cor(temperatura,porcentaje.conversion) ###Salvo que se especifique lo contrario (como puede verificarse en la librería de R), el coeficiente de correlación calculado por defecto será el de Pearson, sin embargo, se puede calcular también el coeficiente de Kendall (escribiendo “kendall” en la casilla “method” de la sintaxis “cor”) o el de Spearman (escribiendo “spearman” en la casilla “method” de la sintaxis “cor”).

cor(presion,porcentaje.conversion)

###VÍNCULO, SIMILITUDES Y DIFERENCIAS ENTRE CORRELACIÓN Y COVARIANZA

###El coeficiente de correlación está íntimamente vinculado con la covarianza. La covarianza es una medida de correlación y el coeficiente de correlación es también una forma de medir la correlación (que difiere según sea de Pearson, Kendall o Spearman).

###La covarianza indica la dirección de la relación lineal entre variables, mientras que el coeficiente de correlación mide no sólo la dirección sino además la fuerza de esa relación lineal entre variables.

###La covarianza puede ir de menos infinito a más infinito, mientras que el coeficiente de correlación oscila entre -1 y 1.

###La covarianza se ve afectada por los cambios de escala: si todos los valores de una variable se multiplican por una constante y todos los valores de otra variable se multiplican por una constante similar o diferente, entonces se cambia la covarianza. La correlación no se ve influenciada por el cambio de escala.

###La covarianza asume las unidades del producto de las unidades de las dos variables. La correlación es adimensional, es decir, es una medida libre de unidades de la relación entre variables.

###La covarianza de dos variables dependientes mide cuánto en cantidad real (es decir, cm, kg, litros) en promedio covarían. La correlación de dos variables dependientes mide la proporción de cuánto varían en promedio estas variables entre sí.

###La covarianza es cero en el caso de variables independientes (si una variable se mueve y la otra no) porque entonces las variables no necesariamente se mueven juntas (por el supuesto de ortogonalidad entre los vectores, que expresa geométricamente su independencia lineal). Los movimientos independientes no contribuyen a la correlación total. Por tanto, las variables completamente independientes tienen una correlación cero.

## CREAR UNA MATRIZ DE CORRELACIONES DE PEARSON Y DE SPEARMAN

####La vinilación de los glucósidos se presenta cuando se les agrega acetileno a alta presión y alta temperatura, en presencia de una base para producir éteres de monovinil.

###Los productos de monovinil éter son útiles en varios procesos industriales de síntesis.

###Interesa determinar qué condiciones producen una conversión máxima de metil glucósidos para diversos isómeros de monovinil.

cor(vinilacion) ###Pearson

cor(vinilacion, method=”spearman”) ###Spearman

## CREAR UNA MATRIZ DE VARIANZAS Y COVARIANZAS (LOCALIZADAS ESTAS ÚLTIMAS EN LA DIAGONAL PRINCIPAL DE LA MATRIZ)

cov(vinilacion)

## GENERAR GRÁFICOS DE DISPERSIÓN

plot(temperatura,porcentaje.conversion)

plot(porcentaje.conversion~temperatura)

mod = lm(porcentaje.conversion~temperatura)

abline(mod,col=2)

###La sintaxis “lm” es usada para realizar ajuste de modelos lineales (es decir, ajustar un conjunto de datos a la curva dibujada por un modelo lineal -i.e., una línea recta-, lo cual -si es estadísticamente robusto- implica validar que el conjunto de datos en cuestión posee un patrón de comportamiento geométrico lineal).

###La sintaxis “lm” puede utilizar para el ajuste el método de los mínimos cuadrados ponderados o el método de mínimos cuadrados ordinarios, en función de si la opción “weights” se llena con un vector numérico o con “NULL”, respectivamente).

### La casilla “weights” de la sintaxis “lm” expresa las ponderaciones a utilizar para realizar el proceso de ajuste (si las ponderaciones son iguales para todas las observaciones, entonces el método de mínimos cuadrados ponderados se transforma en el método de mínimos cuadrados ordinarios). Estas ponderaciones son, en términos computacionales, aquellas que minimizan la suma ponderada de los errores al cuadrado.

###Las ponderaciones no nulas pueden user usadas para indicar diferentes varianzas (con los valores de las ponderaciones siendo inversamente proporcionales a la varianza); o, equivalentemente, cuando los elementos del vector de ponderaciones son enteros positivos w_i, en donde cada respuesta y_i es la media de las w_j unidades observacionales ponderadas (incluyendo el caso de que hay w_i observaciones iguales a y_i y los datos se han resumido).

###Sin embargo, en el último caso, observe que no se utiliza la variación dentro del grupo. Por lo tanto, la estimación sigma y los grados de libertad residuales pueden ser subóptimos; en el caso de pesos de replicación, incluso incorrecto. Por lo tanto, los errores estándar y las tablas de análisis de varianza deben tratarse con cuidado.

###La estimación sigma se refiere a la sintaxis “sigma” que estima la desviación estándar de los errores (véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/sigma.html).

###Si la variable de respuesta (o dependiente) es una matriz, un modelo lineal se ajusta por separado mediante mínimos cuadrados a cada columna de la matriz.

###Cabe mencionar que “formula” (la primera entrada de la sintaxis “lm”) tiene un término de intersección implícito (recuérdese que toda ecuación de regresión tiene un intercepto B_0, que puede ser nulo). Para eliminar dicho término, debe usarse y ~ x – 1 o y ~ 0 + x.

plot(presion~porcentaje.conversion)

mod = lm(presion~porcentaje.conversion) ###Ajuste a la recta antes mencionado y guardado bajo el nombre “mod”.

abline(mod,col=2) ###Es crear una línea color rojo (col=2) en la gráfica generada (con la función “mod”)

## REALIZAR PRUEBA DE HIPÓTESIS PARA EL COEFICIENTE DE CORRELACIÓN

###Véase https://opentextbc.ca/introstatopenstax/chapter/testing-the-significance-of-the-correlation-coefficient/, https://online.stat.psu.edu/stat501/lesson/1/1.9,

###Para estar casi seguros (en relación al concepto de convergencia) Para asegurar que existe al menos una leve correlación entre dos variables (X,Y) se tiene que probar que el coeficiente de correlación poblacional (r) no es nulo.

###Para que la prueba de hipótesis tenga validez se debe verificar que la distribución de Y para cada X es normal y que sus valores han sido seleccionados aleatoriamente.

###Si se rechaza la hipótesis nula, no se asegura que haya una correlación muy alta.

###Si el valor p es menor que el nivel de significancia se rechaza la Ho de que el coeficiente de correlación entre Y y X es cero en términos de determinado nivel de significancia estadística.

###Evaluar la significancia estadística de un coeficiente de correlación puede contribuir a validar o refutar una investigación donde este se haya utilizado (siempre que se cuenten con los datos empleados en la investigación), por ejemplo, en el uso de modelos lineales de predicción.

###Se puede utilizar la distribución t con n-2 grados de libertad para probar la hipótesis.

###Como se observará a continuación, además de la forma estándar, también es posible calcular t como la diferencia entre el coeficiente de correlación.

###Si la probabilidad asociada a la hipótesis nula es casi cero, puede afirmarse a un nivel de confianza determinado de que la correlación es altamente significativa en términos estadísticos.

###FORMA MANUAL

ee = sqrt((1-coef.correlacion^2)/(n-2))

t.calculado = (coef.correlacion-0)/ee ###Aquí parece implicarse que el valor t puede calcularse como el cociente entre el coeficiente de correlación muestral menos el coeficiente de correlación poblacional sobre el error estándar de la media.

2*(1-pt(t.calculado,n-2))

###FORMA AUTOMATIZADA

cor.test(temperatura,porcentaje.conversion) ###El valor del coeficiente de correlación que se ha estipulado (que es cero) debe encontrarse dentro del intervalo de confianza al nivel de probabilidad pertinente para aceptar Ho y, caso contrario, rechazarla.

cor.test(temperatura,presion)

###Como se señala en https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/,  calcula el valor umbral x por debajo del cual se encuentran las observaciones sobre el fenómeno de estudio en una proporción P de las ocasiones (nótese aquí una definición frecuentista de probabilidad), incluyendo el umbral en cuestión.

qt(0.975,6)

### EJEMPLO DE APROXIMACIÓN COMPUTACIONAL DE LA DISTRIBUCIÓN t DE STUDENT A LA DISTRIBUCIÓN NORMAL

###El intervalo de confianza se calcula realizando la transformación-z de Fisher (tanto con la función automatizada de R como con la función personalizada elaborada) como a nivel teórico), la cual se utiliza porque cuando la transformación se aplica al coeficiente de correlación muestral, la distribución muestral de la variable resultante es aproximadamente normal, lo que implica que posee una varianza que es estable sobre diferentes valores de la correlación verdadera subyacente (puede ampliarse más en https://en.wikipedia.org/wiki/Fisher_transformation).

coef.correlacion+c(-1,1)*qt(0.975,6)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido como una distribución t de Student.

coef.correlacion+c(-1,1)*qnorm(0.975)*ee ###Intervalo de confianza para el estadístico de prueba sujeto de hipótesis (el coeficiente de correlación, en este caso) distribuido normalmente.

## CASO DE APLICACIÓN HIPOTÉTICO

###En un estudio sobre el metabolismo de una especie salvaje, un biólogo obtuvo índices de actividad y datos sobre tasas metabólicas para 20 animales observados en cautiverio.

rm(list=ls()) ###Remover todos los objetos de la lista

actividad <- read.csv(“actividad.csv”, sep = “,”, dec=”.”, header = T)

attach(actividad)

n=nrow(actividad)

str(actividad)####”str” es para ver qué tipo de dato es cada variable.

plot(Indice.actividad,Tasa.metabolica)

###Coeficiente de Correlación de Pearson

cor(Indice.actividad,Tasa.metabolica, method=”pearson”)

###Se rechaza la hipótesis nula de que la correlación de Pearson es 0.

###Coeficiente de correlación de Spearman

(corr = cor(Indice.actividad,Tasa.metabolica, method=”spearman”))

(t.s=corr*(sqrt((n-2)/(1-(corr^2)))))

(gl=n-2)

(1-pt(t.s,gl))*2

###Se rechaza la hipótesis nula de que la correlación de Spearman es 0.

###NOTA ADICIONAL:

###Ambas oscilan entre -1 y 1. El signo negativo denota la relacion inversa entre ambas. La correlacion de Pearson mide la relación lineal entre dos variables (correlacion 0 es independencia lineal, que los vectores son ortogonales). La correlación de Pearson es para variables numérica de razón y tiene el supuesto de normalidad en la distribución de los valores de los datos. Cuando los supuestos son altamente violados, lo mejor es usar una medida de correlación no-paramétrica, específicamente el coeficiente de Spearman. Sobre el coeficiente de Spearman se puede decir lo mismo en relación a la asociación. Así, valores de 0 indican correlación 0, pero no asegura que por ser cero las variables sean independientes (no es concluyente).

### TABLAS DE CONTINGENCIA Y PRUEBA DE INDEPENDENCIA

###Una tabla de contingencia es un arreglo para representar simultáneamente las cantidades de individuos y sus porcentajes que se presentan en cada celda al cruzar dos variables categóricas.

###En algunos casos una de las variables puede funcionar como respuesta y la otra como factor, pero en otros casos sólo interesa la relación entre ambas sin intentar explicar la dirección de la relación.

###CASO DE APLICACIÓN HIPOTÉTICO

###Un estudio de ensayos clínicos trataba de probar si la ingesta regular de aspirina reduce la mortalidad por enfermedades cardiovasculares. Los participantes en el estudio tomaron una aspirina o un placebo cada dos días. El estudio se hizo de tal forma que nadie sabía qué pastilla estaba tomando. La respuesta es que si presenta o no ataque cardiaco (2 niveles),

rm(list=ls())

aspirina = read.csv(“aspirina.csv”, sep = “,”, dec=”.”, header = T)

aspirina

str(aspirina)

attach(aspirina)

names(aspirina)

str(aspirina)

View(aspirina)

#### 1. Determinar las diferencias entre la proporción a la que ocurrió un ataque dependiendo de la pastilla que consumió. Identifique el porcentaje global en que presentó ataque y el porcentaje global en que no presentó.

e=tapply(aspirina$freq,list(ataque,pastilla),sum) ###Genera la estructura de la tabla con la que se trabajará (la base de datos organizada según el diseño experimental previamente realizado).

prop.table(e,2) ###Riesgo Relativo columna. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

prop.table(e,1) ###Riesgo Relativo fila. Para verificar esto, contrástese lo expuesto al inicio de este documento con la documentación CRAN [accesible mediante la sintaxis “?prop.table”] para más detalles.

(et=addmargins(e)) ###Tabla de contingencia.

addmargins(prop.table(e)) ####Distribución porcentual completa.

###Si se asume que el tipo de pastilla no influye en el hecho de tener un ataque cardíaco, entonces, debería de haber igual porcentaje de ataques en la columna de médicos que tomaron aspirina que en la de los que tomaron placebo.

###Se obtiene el valor esperado de ataques y no ataques.

### Lo anterior se realiza bajo el supuesto de que hay un 1.3% de ataques en general y un 98.7% de no ataques.

#### 2. Usando los valores observados y esperados, calcular el valor de Chi-Cuadrado para determinar si existe dependencia entre ataque y pastilla?

###Al aplicar la distribución Chi cuadrado, que es una distribución continua, para representar un fenómeno discreto, como el número de casos en cada unos de los supuestos de la tabla de 2*2, existe un ligero fallo en la aproximación a la realidad. En números grandes, esta desviación es muy escasa, y puede desecharse, pero cuando las cantidades esperadas en alguna de las celdas son números pequeños- en general se toma como límite el que tengan menos de cinco elementos- la desviación puede ser más importante. Para evitarlo, Yates propuso en 1934 una corrección de los métodos empleados para hallar el Chi cuadrado, que mejora la concordancia entre los resultados del cálculo y la distribución Chi cuadrado. En el articulo anterior, correspondiente a Chi cuadrado,  el calculador expone, además de los resultados de Chi cuadrado, y las indicaciones para decidir, con arreglo a los límites de la distribución para cada uno de los errores alfa admitidos, el rechazar o no la hipótesis nula, una exposición de las frecuencias esperadas en cada una de las casillas de la tabla de contingencia, y la advertencia de que si alguna de ellas tiene un valor inferior a 5 debería emplearse la corrección de Yates. Fuente: https://www.samiuc.es/estadisticas-variables-binarias/valoracion-inicial-pruebas-diagnosticas/chi-cuadrado-correccion-yates/.

###Como se señala en [James E. Grizzle, Continuity Correction in the χ2-Test for 2 × 2 Tables, (The American Statistician, Oct., 1967, Vol. 21, No. 4 (Oct., 1967), pp. 28-32), p. 29-30], técnicamente hablando, la corrección de Yates hace que “(…) las probabilidades obtenidas bajo la distribución χ2 bajo la hipótesis nula converjan de forma más cercana con las probabilidades obtenidas bajo el supuesto de que el conjunto de datos fue generado por una muestra proveniente de la distribución hipergeométrica, i.e., generados bajo el supuesto que los dos márgenes de la tabla fueron fijados con antelación al muestreo.”

###Grizzle se refiere con “márgenes” a los totales de la tabla (véase https://www.tutorialspoint.com/how-to-create-a-contingency-table-with-sum-on-the-margins-from-an-r-data-frame). Además, la lógica de ello subyace en la misma definición matemática de la distribución hipergeométrica. Como se puede verificar en RStudio mediante la sintaxis “?rhyper”, la distribución hipergeométrica tiene la estructura matemática (distribución de probabilidad) p(x) = choose(m, x) choose(n, k-x)/choose(m+n, k), en donde m es el número de éxitos, n es el número de fracasos lo que ) y k es el tamaño de la muestra (tanto m, n y k son parámetros en función del conjunto de datos, evidentemente), con los primeros dos momentos definidos por E[X] = μ = k*p y la varianza se define como Var(X) = k p (1 – p) * (m+n-k)/(m+n-1). De lo anterior se deriva naturalmente que para realizar el análisis estocástico del fenómeno modelado con la distribución hipergeométrica es necesario conocer la cantidad de sujetos que representan los éxitos y los fracasos del experimento (en donde “éxito” y “fracaso” se define en función del planteamiento del experimento, lo cual a su vez obedece a múltiples factores) y ello implica que se debe conocer el total de los sujetos experimentales estudiados junto con su desglose en los términos binarios ya especificados.

###Lo mismo señalado por Grizzle se verifica (citando a Grizzle) en (Biometry, The Principles and Practice of Statistics in Biological Research, Robert E. Sokal & F. James Rohlf, Third Edition, p. 737), especificando que se vuelve innecesaria la corrección de Yates aún para muestras de 20 observaciones.

###Adicionalmente, merece mención el hecho que, como es sabido, la distribución binomial se utiliza con frecuencia para modelar el número de éxitos en una muestra de tamaño n extraída con reemplazo de una población de tamaño N. Sin embargo, si el muestreo se realiza sin reemplazo, las muestras extraídas no son independientes y, por lo tanto, la distribución resultante es una hipergeométrica; sin embargo, para N mucho más grande que n, la distribución binomial sigue siendo una buena aproximación y se usa ampliamente (véase https://www.wikiwand.com/en/Binomial_distribution).

###Grados de libertad correspondientes: número de filas menos 1 por número de columnas menos 1.

###Ho = Hay independencia entre el ataque y las pastillas.

(tabla.freq<-xtabs(freq~ataque+pastilla, data=aspirina))

###La tabla de frecuencias contiene tanto las frecuencias observadas como las esperadas.

###La frecuencia esperada es el conteo de observaciones que se espera en una celda, en promedio, si las variables son independientes.

###La frecuencia esperada de una variable se calcula como el producto entre el cociente [(Total de la Columna j)/(Total de Totales)]*(Total Fila i).

###PRUEBA CHI-CUADRADO AUTOMATIZADA

(prueba.chi<-chisq.test(tabla.freq,correct=F) ) ###La sintaxis “chisq.test” sirve para realizar la prueba de Chi-Cuadrado en tablas de contingencia y para realizar pruebas de bondad de ajuste.

names(prueba.chi)

###PRUEBA CHI-CUADRADO PASO A PASO

(esperado<-prueba.chi$expected) ###valores esperados

(observado<-prueba.chi$observed) ###valores observados

(cuadrados<-(esperado-observado)^2/esperado)

(chi<-sum(cuadrados))

1-pchisq(chi,1) ###Valor de p de la distribución Chi-Cuadrado (especificada mediante el conjunto de datos) calculado de forma no-automatizada.

###Si el valor p es mayor que el nivel de significancia se falla en rechazar Ho, si es menor se rechaza Ho.

###Se rechaza Ho con un nivel de significancia alfa de 0.05. Puesto que se tiene una probabilidad muy baja de cometer error tipo I, i.e., rechazar la hipótesis nula siendo falsa.

ANÁLISIS DE LA METODOLOGÍA APLICADA POR LOS INSTITUTOS NACIONALES DE ESTADÍSTICA Y CENSOS EN LA CLASIFICACIÓN CUALITATIVA DEL NIVEL DE INGRESO

ISADORE NABI

REFERENCIAS

Aldridge, H. (2017). How do we measure? Toronto: Maytree.

Arias Chavarría, E. (2019). ESTADO, NEOLIBERALISMO Y EMPRESARIOS EN COSTA RICA:LA COYUNTURA DEL TLC. Revista de Ciencias Sociales de la Universidad de Costa Rica, 69-86. Obtenido de https://www.redalyc.org/jatsRepo/153/15360186004/html/index.html

Arias Ramírez, R. (2020). Pobreza y desigualdad en Costa Rica: una mirada más allá de la distribución de los ingresos. Estudios del Desarrollo Social: Cuba y América Latina, 1-26. Obtenido de http://scielo.sld.cu/pdf/reds/v8n1/2308-0132-reds-8-01-16.pdf

autocosts. (6 de Mayo de 2019). Coding rules. Obtenido de GitHub: https://github.com/jfoclpf/autocosts/blob/master/contributing.md

autocosts. (2 de Noviembre de 2020). Core. Obtenido de https://github.com/jfoclpf/autocosts/tree/master/src/client/core

autocosts. (27 de Abril de 2021). Costos de Automóviles de Costa Rica. Obtenido de GitHub: https://autocostos.info/cr/stats

Barría, C. (16 de Mayo de 2019). Cómo Costa Rica se convirtió en uno de los países más innovadores de América Latina (y cuáles son algunos de los inventos más sorprendentes). Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-48193736

Baumol, W. (1983). Marx and the Iron Law of Wages. The American Economic Review, 303-308.

Blanchard, O., & Leigh, D. (2013). Growth Forecast Errors and Fiscal Multipliers. Washington: International Monetary Fund. Obtenido de https://www.imf.org/external/pubs/ft/wp/2013/wp1301.pdf

Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (Novena ed.). Boston: Cengage Learning.

Case, K., Fair, R., & Oster, S. (2012). Principles of Economics (Décima ed.). Boston: Pearson Education.

Cisneros, M. F. (29 de Mayo de 2016). ¿Carro nuevo o usado? Esto es lo que le ofrecen las entidades financieras? Obtenido de FINANZAS: https://www.elfinancierocr.com/finanzas/carro-nuevo-o-usado-esto-es-lo-que-le-ofrecen-las-entidades-financieras/FFPKCXEYYBB4BGAQ7GFRK3GNUU/story/

Cisneros, M. F. (21 de Febrero de 2020). ¿Quiere comprar una casa? Deberá pagar al menos ¢7.000 por cada millón que le financien. Obtenido de El Financiero: https://www.elfinancierocr.com/finanzas/quiere-comprar-una-casa-debera-pagar-al-menos/7EXHTMCZ2RESBERYYQW4JQZYCQ/story/

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Delgado Jiménez, F. (2013). EL EMPLEO INFORMAL EN COSTA RICA: CARACTERÍSTICAS DE LOS OCUPADOS Y SUS PUESTOS DE TRABAJO. Ciencias Económicas, XXXI(2), 35-51.

Díaz Arias, D. (2019). Historia del neoliberalismo en Costa Rica. Avances de Investigación CIHAC, 1-45. Obtenido de https://cihac.fcs.ucr.ac.cr/wp-content/uploads/2019/08/David-Diaz-Historia-del-Neoliberalismo-CIHAC.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Encyclopaedia Britannica. (27 de Abril de 2021). Iron Law of Wages. Obtenido de Economics: https://www.britannica.com/topic/Iron-Law-of-Wages

Expatistan. (27 de Abril de 2021). ¿Cómo funcionan el índice y las comparaciones? Obtenido de https://www.expatistan.com/es/como-funciona

Expatistan. (Abril de 2021). Costo de vida en San Jose, Costa Rica, Costa Rica. Obtenido de https://www.expatistan.com/es/costo-de-vida/san-jose-costa-rica

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Foro Económico Mundial. (12 de Abril de 2019). 50 years of US wages, in one chart. Obtenido de https://www.weforum.org/agenda/2019/04/50-years-of-us-wages-in-one-chart/

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación Promotora de Vivienda. (28 de Abril de 2021). Informe Nacional. Situación de Vivienda y Desarrollo Urbano 2016. Obtenido de https://www.fuprovi.org/wp-content/uploads/2018/02/situacion-del-sector-vivienda-y-desarrollo-urbano-costa-rica-2016.pdf

Hidalgo Víquez, C., Andrade Pérez, L., Rodríguez Gonzáles, S., Dumani Echandi, M., Alvarado Molina, N., Cerdas Nuñez, M., & Quirós Blanco, G. (2020). Análisis de la canasta básica alimentaria de Costa Rica: oportunidades desde la alimentación y nutrición. Población y Salud en Mesoamérica, 1-24. Obtenido de https://revistas.ucr.ac.cr/index.php/psm/article/view/40822/42616

i-base. (27 de Abril de 2021). Diet: a balanced diet and your health. Obtenido de GUIDES: https://i-base.info/guides/side/diet-a-balanced-diet-and-your-health

Instituto Nacional de Estadística y Censos de Costa Rica. (2010). Actualización metodológica para la medición del empleo y la pobreza. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documentos/pobreza_y_presupuesto_de_hogares/pobreza/metodologias/documentos_metodologicos/mepobrezaenaho2010-02.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre gastos de los hogares. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-gasto.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Coeficiente de Gini por hogar y per cápita, julio 2010 – 2020. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/repobrezaenaho2010-2020-01_gini.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Nivel de pobreza por LP según características de los hogares y las personas, julio 2019 y julio 2020. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenaho2020-linea_de_pobreza.xlsx

Jaccard, N. (29 de Septiembre de 2013). ¿Cómo es ser pobre en Suiza? Obtenido de Revista Semana: https://www.semana.com/mundo/articulo/suiza-ser-probre/359491-3/

Kleiber, C. (2007). The Lorenz curve in economics and econometrics. University of Basel. Basel: Center of Business and Economics. Obtenido de https://www.econstor.eu/bitstream/10419/123375/1/wp2007-09.pdf

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Obtenido de https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Laplante, P. A. (2001). DICTIONARY OF COMPUTER SCIENCE, ENGENEERING AND TECHNOLOGY. Boca Ratón, Florida, Estados Unidos: CRC Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

Madrigal, L. M. (5 de Diciembre de 2018). Hacienda revela identidad de grandes empresas que reportan cero ganancias reiteradamente. Obtenido de DELFINO: https://delfino.cr/2018/12/hacienda-revela-identidad-de-grandes-empresas-que-reportan-cero-ganancias-reiteradamente

Messina, J., & Silva, J. (2019). Twenty Years of Wage Inequality in Latin America. Washington: Inter-American Development Bank.

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Online Currency Converter. (27 de Abril de 2021). Swiss franc (CHF) and United States dollar (USD) Year 2013 Exchange Rate History. Source: CBR. Obtenido de https://freecurrencyrates.com/en/exchange-rate-history/CHF-USD/2013/cbr

preciosmundi. (Abril de 2021). Precios de ropa y calzado en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-ropa-calzado

preciosmundi. (Abril de 2021). Precios de transportes y servicios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-transporte-servicios

preciosmundi. (Abril de 2021). Precios de vivienda y salarios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-vivienda-salarios

preciosmundi. (Abril de 2021). Precios en supermercados en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precios-supermercado

PROGRAMA ESTADO DE LA NACIÓN. (2018). ESTADO DE LA NACIÓN EN DESARROLLO HUMANO SOSTENIBLE. Pavas: Consejo Nacional de Rectores de Costa Rica (CONARE). Obtenido de http://www.asamblea.go.cr/sd/Documents/analisis/Inforne%20Estado%20de%20%20La%20Naci%C3%B3n%202018.pdf

Quirós, M. (17 de Junio de 2017). La vivienda en alquiler: la realidad y los retos. Obtenido de El Financiero: https://www.elfinancierocr.com/opinion/la-vivienda-en-alquiler-la-realidad-y-los-retos/LJCFGLYCXNHL3H2VWGGCK5K4UI/story/

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Salazar Álvarez, G. (7 de Noviembre de 2018). Inflación y costo de vida en la Costa Rica actual. Obtenido de elmundo.cr: https://www.elmundo.cr/economia-y-negocios/inflacion-y-costo-de-vida-en-la-costa-rica-actual/

Seixo, N. (28 de Abril de 2021). ransiciones de la Edad Media a la Edad ModernaRecensión de El debate Brenner. Estructura de clases agraria y desarrollo económico en la Europa preindustrial. Obtenido de http://www.uned-historia.es/sites/default/files/Apuntes/Nacho%20Seixo%20-%20Transiciones%20de%20la%20Edad%20Media%20a%20la%20Edad%20Moderna.pdf

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Obtenido de https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

Vargas Solís, L. P. (2016). El Proyecto Histórico Neoliberal en Costa Rica (1984-2015): Devenir histórico y crisis. Revista Rupturas, 147-162. doi:https://doi.org/10.22458/rr.v1i1.1167

Ventas, L. (5 de Febrero de 2018). ¿Es Costa Rica realmente tan “pura vida”? Las heridas ocultas tras la fachada de país próspero y estable. Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-america-latina-42879401

Weisstein, E. (22 de Abril de 2021). Lorenz Curve. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/LorenzCurve.html

Wikipedia. (10 de Abril de 2021). Gini coefficient. Obtenido de Income inequality metrics: https://en.wikipedia.org/wiki/Gini_coefficient

Wikipedia. (27 de Febrero de 2021). Lorenz curve. Obtenido de Economic curves: https://en.wikipedia.org/wiki/Lorenz_curve

World Health Organization. (29 de Abril de 2020). Salt reduction. Obtenido de Fact sheets: https://www.who.int/news-room/fact-sheets/detail/salt-reduction

LECCIONES DE GNOSEOLOGÍA MARXIANA I (LESSONS ON MARXIAN GNOSEOLOGY I)

isaDORE NABI

xiii. REFERENCIAS (references)

Bayes, T. (23 de Diciembre de 1763). An Essay towards solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London, 370-418.

Bernoulli, J. (2006). The Art of Conjecturing (Together to a Friend on Sets in Court Tennis). Maryland: John Hopkins University Press.

Crupi, V. (28 de Enero de 2020). Confirmation. Obtenido de Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/confirmation/

DeGroot, M., & Schervish, M. (2012). Probability and Statistics. Boston: Pearson Education.

Dussel, E. (1991). 2. El método dialéctico de lo abstracto a lo concreto (20, 41-33, 14; 21,3-31,38) :(Cuaderno M. desde la página 14 del manuscrito, terminado a mediados deseptiembre de 1857). En E. Dussel, La producción teórica de Marx: un comentario a los grundrisse (págs. 48-63). México D.F.: Siglo XXI Editores. Obtenido de http://biblioteca.clacso.edu.ar/clacso/otros/20120424094653/3cap2.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Eremenko, A. (30 de Abril de 2020). Stack Exchange, History of Sciences and Mathematics. Obtenido de What was Kolmogorov’s point of view in the philosophy of mathematics?: https://hsm.stackexchange.com/questions/11730/what-was-kolmogorov-s-point-of-view-in-the-philosophy-of-mathematics

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Filosofía en español. (9 de Febrero de 2018). Diccionario filosófico abreviado. Obtenido de URSS: http://www.filosofia.org/urss/dfa1959.htm

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación del Español Urgente. (23 de Marzo de 2021). Formación de gentilicios extranjeros. Obtenido de Lista de topónimos y gentilicios: https://www.wikilengua.org/index.php/Formaci%C3%B3n_de_gentilicios_extranjeros

Fundación del Español Urgente. (23 de Marzo de 2021). -ista (sufijo). Obtenido de Sufijos: https://www.wikilengua.org/index.php/-ista_(sufijo)

Gigerenzer, G. (2004). Mindless Statistics. The Journal of Socio-Economics, 587-606.

Greene, W. H. (2012). Econometric Analysis (International Edition). Essex: Pearson Education Limited.

Guerrero Jiménez, D. (2018). TRABAJO IMPRODUCTIVO, CRECIMIENTO Y TERCIARIZACIÓN (30 AÑOS DESPUÉS DE MARX Y KEYNES). International Journal of Political Economy, 1-16. Obtenido de https://www.researchgate.net/publication/327189598_Diego_Guerrero_TRABAJO_IMPRODUCTIVO_CRECIMIENTO_Y_TERCIARIZACION_30_ANOS_DESPUES_DE_MARX_Y_KEYNES

Haldane, J. B. (1945). Science and Everyday Life. Allahabad,: Kitab Mahal Publishers.

Hegel, F. (1968). Ciencia de la Lógica. Buenos Aires: Solar / Hachette.

Johnsen, J. (17 de Enero de 2019). What is the difference between positivism and empiricism? Obtenido de Quora: https://www.quora.com/What-is-the-difference-between-positivism-and-empiricism

Kohan, N., & Brito, P. (1 de Febrero de 2009). Marxismo para principiantes. Obtenido de nodo50: https://info.nodo50.org/Diccionario-basico-de-categorias.html

Kojevnikov, A. (19 de Junio de 2019). PROBABILITY, MARXISM, AND QUANTUM ENSEMBLES. Obtenido de The University of British Columbia: https://history.ubc.ca/wp-content/uploads/sites/23/2019/06/probability2012.pdf

Kolmogórov, A. (1956). Foundations of the Theory of Probability (Segunda Edición ed.). New York: Chelsea Publishing Company.

Laplace, P.-S. (2015). Ensayo Filosófico Sobre Probabilidades. Ciudad de México: Biblioteca Digital del Instituto Latinoamericano de Comunicación Educativa. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lenin, V. (1974). Cuadernos Filosóficos. Madrid: Editorial Ayuso.

Loughborough University. (21 de Febrero de 2008). Total Probability and Bayes’ Theorem. Obtenido de The theorem of total probability: https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook35/35_4_total_prob_bayes_thm.pdf

Maibaum, G. (1988). Teoría de Probabilidades y Estadística Matemática. (M. Á. Pérez, Trad.) La Habana, Cuba: Editorial Pueblo y Educación.

Marx, K. (1894). Capital. A Critique of Political Economy (Vol. III). New York: International Publishers.

Marx, K. (1989). Contribución a la Crítica de la Economía Política. Moscú: Editorial Progreso.

Marx, K. (2007). Elementos Fundamentales para la Crítica de la Economía Política (Grundrisse) 1857-1858 (Vol. I). (J. Aricó, M. Murmis, P. Scaron, Edits., & P. Scaron, Trad.) México, D.F.: Siglo XXI Editores.

Marx, K. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Marx, K., & Engels, F. (1987). Karl Marx and Friedrich Engels Collected Works (Vol. XLII). Moscú: Progress Publishers.

Mittelhammer, R. (2013). Mathematical Statistics for Economics and Business (Segunda ed.). New York: Springer.

Nabi, I. (2020). Algunas Reflexiones Sobre la Distribución Binomial Negativa II (Un Análisis Teórico y Aplicado). Documento Inédito. Obtenido de https://marxianstatistics.files.wordpress.com/2020/12/algunas-reflexiones-sobre-la-distribucion-binomial-negativa-ii-isadore-nabi-2.pdf

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Nabi, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

North Carolina State University. (27 de Septiembre de 2020). People – Department of History . Obtenido de Dr Edith D Sylla: https://history.ncsu.edu/people/faculty_staff/edsssl

Perezgonzalez, J. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. (L. Roberts, Ed.) Frontiers in Psychology, 6(223), 1-11. doi:10.3389/fpsyg.2015.00223

Poisson, S.-D. (2013). Researches into the Probabilities of Judgments in Criminal and Civil Cases. (O. Sheynin, Ed.) Berlin: arXiv. Obtenido de https://arxiv.org/abs/1902.02782

Radboud Univeristy. (11 de Febrero de 2011). Faculty of Philosophy, Theology and Religious Studies. Obtenido de Center for the History of Philosophy and Science. Edith Dudley Sylla: https://www.ru.nl/ptrs/chps/about-us/former-members/vm/sylla/

Rosental, M. (1961). Los problemas de la dialéctica en “EL CAPITAL” de Marx. Montevideo: Ediciones Pueblos Unidos.

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. Montevideo: Ediciones Pueblos Unidos.

Russell, K. (29 de Enero de 2014). University of Manitoba. Obtenido de Hypothesis testing: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

StackExchange Philosophy. (15 de Junio de 2015). How empiricism and positivism is distinguished? What’s their differences? Obtenido de Philosophy: https://philosophy.stackexchange.com/questions/24937/how-empiricism-and-positivism-is-distinguished-whats-their-differences

TECH2 NEWS STAFF. (28 de Noviembre de 2019). SCIENTISTS MAY HAVE DISCOVERED A FIFTH FUNDAMENTAL ‘FORCE OF NATURE,’ THEY’RE CALLING IT X17. Obtenido de TECH2: https://www.firstpost.com/tech/science/scientists-may-have-discovered-a-fifth-fundamental-force-of-nature-theyre-calling-it-x17-7710261.html

Wikipedia. (27 de Septiembre de 2020). Population Genetics. Obtenido de J. B. S. Haldane: https://es.wikipedia.org/wiki/John_Burdon_Sanderson_Haldane

Wikipedia. (23 de Septiembre de 2020). Statistics. Obtenido de Inverse Probability: https://en.wikipedia.org/wiki/Inverse_probability

Wikipedia. (13 de Marzo de 2021). Relación de incertidumbre. Obtenido de Mecánica cuántica: https://es.wikipedia.org/wiki/Relaci%C3%B3n_de_indeterminaci%C3%B3n_de_Heisenberg

Williamson, J. (2010). In Defence of Objective Bayesianism. Oxford: Oxford University Press.

UNA INVESTIGACIÓN HISTÓRICA, TEÓRICA Y MATEMÁTICA SOBRE EL CARÁCTER DIALÉCTICO DE LOS FUNDAMENTOS EPISTEMOLÓGICOS DE LA COMPLEJIDAD EN LOS SISTEMAS DINÁMICOS NO-LINEALES DE LARGO PLAZO

ISADORE NABI

Abstracto

Desde Pierre-Simon Laplace en 1840 con su célebre “Ensayo Filosófico Sobre Probabilidades”, los filósofos y científicos se han interesado por dicotomía, sugerida por la observación de los hechos de la realidad, entre la incertidumbre y el determinismo. Henri Poincaré en 1908 coge el testigo de Laplace, comenzando así el esfuerzo consciente por unificarlas filosóficamente y dando así nacimiento a la Teoría del Caos, para que luego Edward Lorenz en 1963 diera a luz los Sistemas Complejos en su investigación titulada “Deterministic Nonperiodic Flow” y finalmente fue Benoit Mandelbrot en 1982 quien revolucionó la Geometría con el planteamiento de las superficies fractales en su obra “La Geometría Fractal de la Naturaleza”. Así como para los sistemas complejos ha sido de vital importancia ir comprendiendo unificadamente el caos y el determinismo, también fue para los sistemas filosóficos (particularmente la Antigua Grecia y del Idealismo Clásico Alemán) alcanzar precisión en las definiciones de las categorías esencia, forma, contenido, apariencia y fenómeno. Estas categorías filosóficas fueron trabajadas por los filósofos soviéticos en su búsqueda por comprender de manera holista la realidad, siendo plasmadas en el célebre “Diccionario Filosófico” publicado en 1971. La presente investigación plantea que la forma óptima de instrumentalizar esa visión filosófica es nutriéndola de los hallazgos realizados en el campo de la Teoría del Caos y también que la forma óptima de depurar teóricamente lo relacionado a los sistemas complejos es mediante su análisis a la luz de la Lógica Dialéctica-Materialista.

Palabras Clave: Materialismo Dialéctico, Sistemas Complejos, Fractales, Teoría del Caos, Escuela de Filosofía Soviética.

REREFENCIAS

Aravindh, M., Venkatesan, A., & Lakshmanan, M. (2018). Strange nonchaotic attractors for computation. Physical Review E, 97(5), 1-10. doi:https://doi.org/10.1103/PhysRevE.97.052212

Barnet, W., & Chen, P. (1988). Deterministic Chaos and Fractal Atrractors as Tools for NonParametric Dynamical Econometric Inference: With An Application to the Divisa Monetary Aggregates. Computational Mathematics and Modeling, 275-296. Obtenido de http://www.maths.usyd.edu.au/u/gottwald/preprints/testforchaos_MPI.pdf

Bjorvand, A. (1995). A New Approach to Intelligent Systems Theory. The Norwegian Institute of Technology, The University of Trondheim, Faculty of Electrical Engineering and Computer Science. Trondheim: The University of Trondheim. Recuperado el 15 de Abril de 2020, de https://www.anderstorvillbjorvand.com/_service/53/download/id/3378/name/19950428_project_report_fractal_logic.pdf

Elert, G. (11 de Agosto de 2020). Flow Regimes – The Physics Hypertextbook. Recuperado el 11 de Agosto de 2020, de https://physics.info/turbulence/

Gottwald, G., & Melbourne, I. (2016). The 0-1 Test for Chaos: A review. En U. Parlitz, E. G. Lega, R. Barrio, P. Cincotta, C. Giordano, C. Skokos, . . . J. Laskar, & C. G. Sokos (Ed.), Chaos Detection and Predictability (págs. 221-248). Berlin: Springer.

Halperin, B. (2019). Theory of dynamic critical phenomena. Physics Today, 72(2), 42-43. doi:10.1063/PT.3.4137

Jaynes, E. (2003). Probability Theory. The Logic of Science. Cambridge University Press: New York.

Kessler, D., & Greenkorn, R. (1999). Momentum, Heat, and Mass Transfer Fundamentals. New York: Marcel Denker, Inc.

Kilifarska, N., Bakmutov, V., & Melnyk, G. (2020). The Hidden Link Between Earth’s Magnetic Field and Climate. Leiden: Elsevier.

Landau, L. (1994). Física Teórica. Física Estadística (Segunda ed., Vol. 5). (S. Velayos, Ed., & E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Laplace, P.-S. (1902). A Philosophical Essay on Probabilities (1 ed.). (E. M. Pinto, Trad.) London: JOHN WILEY & SONS. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lesne, A. (1998). Renormalization Methods. Critical Phenomena, Chaos, Fractal Structures. Baffins Lane, Chichester, West Sussex, England: John Wiley & Sons Ltd.

Lesne, A., & Laguës, M. (2012). Scale Invariance. From Phase Transitions to Turbulence (Primera edición, traducida del francés (que cuenta con dos ediciones) ed.). New York: Springer.

Li, S., & Li, H. (2006). Parallel AMR Code for Compressible MHD or HD Equations. Los Alamos National Laboratory, Mathematical Modeling and Analysis. Nuevo México: Applied Mathematics and Plasma Physics. Obtenido de https://web.archive.org/web/20160303182548/http://math.lanl.gov/Research/Highlights/amrmhd.shtml

Linder, J., Kohar, V., Kia, B., Hippke, M., Learned, J., & Ditto, W. (4 de Febrero de 2015). Strange nonchaotic stars. Recuperado el 16 de Abril de 2020, de Nonlinear Sciences > Chaotic Dynamics: https://arxiv.org/pdf/1501.01747.pdf

Lorenz, E. (1963). Deterministic Nonperiodic Flow. JOURNAL OF THE ATMOSPHERIC SCIENCES, 20, 130-141.

Mandelbrot, B. (1983). THE FRACTAL GEOMETRY OF NATURE. New York: W.H. Freeman and Company.

Marxist.org. (21 de Junio de 2018). Formal Logic and Dialectics. Recuperado el 14 de Abril de 2020, de The Meaning of Hegel’s Logic: https://www.marxists.org/reference/archive/hegel/help/mean05.htm

McCullagah, P., & Nelder, J. (1989). Generalized Linear Models (Segunda ed.). New York, United States of America: Chapman & Hall.

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para el TCL con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/UYRwHZaS

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para la LGN con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/wVAiBTQZ

Oestreicher, C. (2007). A history of chaos theory. Dialogues in Clinical Neuroscience, 9(3), 279–289. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/pdf/DialoguesClinNeurosci-9-279.pdf

Pezard, L., & Nandrino, J. (2001). Paradigme dynamique en psychopathologie: la “Théorie du chaos”, de la physique à la psychiatrie [Dynamic paradigm in psychopathology: “chaos theory”, from physics to psychiatry]. Encephale, 27(3), 260-268. Obtenido de https://pubmed.ncbi.nlm.nih.gov/11488256/

Poincaré, H. (1908). Chance. En H. Poincaré, Science and Method (págs. 64-90). London: THOMAS NELSON AND SONS. Obtenido de https://www.stat.cmu.edu/~cshalizi/462/readings/Poincare.pdf

Princeton University. (30 de Septiembre de 2019). The Fundamental Postulate . Obtenido de http://assets.press.princeton.edu/chapters/s3_9634.pdf

ResearchGate. (3 de Mayo de 2018). When should one use Fuzzy set theory and Rough set theory? Is there any clear-cut line of difference between them? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/When_should_one_use_Fuzzy_set_theory_and_Rough_set_theory_Is_there_any_clear-cut_line_of_difference_between_them

ResearchGate. (2 de Mayo de 2020). What is the difference between Fuzzy rough sets and Rough fuzzy sets? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/What_is_the_difference_between_Fuzzy_rough_sets_and_Rough_fuzzy_sets

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Russell, K. (29 de Enero de 2014). Hypothesis testing. Recuperado el 15 de Abril de 2020, de Stats – Kevin Russell – University of Manitoba: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

Sharma, V. (2003). Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier. The Open Cardiovascular Medicine Journal(3), 110-123.

Stanford Encyclopedia of Philosophy. (4 de Febrero de 2002). Quantum Logic and Probability Theory. Recuperado el 6 de Julio de 2020, de https://plato.stanford.edu/entries/qt-quantlog/

Valdebenito, E. (1 de Julio de 2019). Fractales: La Geometría del Caos. Recuperado el 11 de Agosto de 2020, de viXra: https://vixra.org/pdf/1901.0152v1.pdf

Werndl, C. (2013). What Are the New Implications of Chaos for Unpredictability? The British Journal for the Philosophy of Science, 60(1), 1-25. doi:10.1093/bjps/axn053