SUPUESTOS DEL MODELO CLÁSICO DE REGRESIÓN LINEAL Y DE LOS MODELOS LINEALES GENERALIZADOS

isadore nabi

REFERENCIAS

Banerjee, A. (29 de Octubre de 2019). Intuition behind model fitting: Overfitting v/s Underfitting. Obtenido de Towards Data Science: https://towardsdatascience.com/intuition-behind-model-fitting-overfitting-v-s-underfitting-d308c21655c7

Bhuptani, R. (13 de Julio de 2020). Quora. Obtenido de What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Cross Validated. (23 de Marzo de 2018). Will log transformation always mitigate heteroskedasticity? Obtenido de StackExchange: https://stats.stackexchange.com/questions/336315/will-log-transformation-always-mitigate-heteroskedasticity

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Guanga, A. (11 de Octubre de 2018). Machine Learning: Bias VS. Variance. Obtenido de Becoming Human: Artificial Intelligence Magazine: https://becominghuman.ai/machine-learning-bias-vs-variance-641f924e6c57

Gujarati, D., & Porter, D. (8 de Julio de 2010). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Obtenido de Homocedasticidad.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

MIT Computer Science & Artificial Intelligence Lab. (6 de Mayo de 2021). Solving over- and under-determined sets of equations. Obtenido de Articles: http://people.csail.mit.edu/bkph/articles/Pseudo_Inverse.pdf

Nabi, I. (27 de Agosto de 2021). MODELOS LINEALES GENERALIZADOS. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/08/modelos-lineales-generalizados-isadore-nabi.pdf

Penn State University, Eberly College of Science. (2018). 10.4 – Multicollinearity. Obtenido de Lesson 10: Regression Pitfalls: https://online.stat.psu.edu/stat462/node/177/

Penn State University, Eberly College of Science. (24 de Mayo de 2021). Introduction to Generalized Linear Models. Obtenido de Analysis of Discrete Data: https://online.stat.psu.edu/stat504/lesson/6/6.1

Perezgonzalez, J. D. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. frontiers in PSYCHOLOGY, VI(223), 1-11.

ResearchGate. (10 de Noviembre de 2014). How it can be possible to fit the four-parameter Fedlund model by only 3 PSD points? Obtenido de https://www.researchgate.net/post/How_it_can_be_possible_to_fit_the_four-parameter_Fedlund_model_by_only_3_PSD_points

ResearchGate. (28 de Septiembre de 2019). s there a rule for how many parameters I can fit to a model, depending on the number of data points I use for the fitting? Obtenido de https://www.researchgate.net/post/Is-there-a-rule-for-how-many-parameters-I-can-fit-to-a-model-depending-on-the-number-of-data-points-I-use-for-the-fitting

Salmerón Gómez, R., Blanco Izquierdo, V., & García García, C. (2016). Micronumerosidad aproximada y regresión lineal múltiple. Anales de ASEPUMA(24), 1-17. Obtenido de https://dialnet.unirioja.es/descarga/articulo/6004585.pdf

Simon Fraser University. (30 de Septiembre de 2011). THE CLASSICAL MODEL. Obtenido de http://www.sfu.ca/~dsignori/buec333/lecture%2010.pdf

StackExchange Cross Validated. (2 de Febrero de 2017). “Least Squares” and “Linear Regression”, are they synonyms? Obtenido de What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

Wikipedia. (18 de Marzo de 2021). Overdetermined system. Obtenido de Partial Differential Equations: https://en.wikipedia.org/wiki/Overdetermined_system

Zhao, J. (9 de Noviembre de 2017). More features than data points in linear regression? Obtenido de Medium: https://medium.com/@jennifer.zzz/more-features-than-data-points-in-linear-regression-5bcabba6883e

FUNDAMENTOS GENERALES DE LA PROGRAMACIÓN EN R STUDIO: UN ENFOQUE ESTADÍSTICO-MATEMÁTICO

ISADORE NABI

GENERALIDADES Y ORÍGENES HISTÓRICOS DE LA DISTRIBUCIÓN CHI-CUADRADO

ISADORE NABI

GENERALIDADES SOBRE LA TEORÍA ESTADÍSTICA DE ENCUESTAS POR MUESTREO

ISADORE NABI

ENCUESTA NACIONAL SOBRE LOS ASPECTOS DE LA VIRTUALIDAD VINCULADOS CON LA PANDEMIA DEL COVID-19 (ENAVIRPA 2021)

ISADORE NABI

VII. REFERENCIAS

Aldrich, J. H., & Nelson, F. D. (1984). Linear Probability, Logit, and Probit Models. Beverly Hills: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Allen, M. (2017). The SAGE Encyclopedia of COMMUNICATION RESEARCH METHODS. London: SAGE Publications, Inc.

AMERICAN PSYCHOLOGICAL ASSOCIATION. (2021, Julio 15). level. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/level

AMERICAN PYSCHOLOGICAL ASSOCIATION. (2021, Julio 15). factor. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/factor

AMERICAN PYSCHOLOGY ASSOCIATION. (2021, Julio 15). logistic regression (LR). Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/logistic-regression

Barrios, J. (2019, Julio 19). La matriz de confusión y sus métricas . Retrieved from Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Bhuptani, R. (2020, Julio 13). Quora. Retrieved from What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Birnbaum, Z. W., & Sirken, M. G. (1950, Marzo). Bias Due to Non-Availability in Sampling Surveys. Journal of the American Statistical Association, 45(249), 98-111.

Burrus, C. S. (2021, Julio 7). Iterative Reweighted Least Squares. Retrieved from https://cnx.org/exports/[email protected]/iterative-reweighted-least-squares-12.pdf

Centro Centroamericano de Población. (2021, Abril 28). Variables y escalas de medición. Retrieved from Universidad de Costa Rica: https://ccp.ucr.ac.cr/cursos/epidistancia/contenido/2_escmed.html

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Departamento Administrativo Nacional de Estadística. (2003). Metodología de Diseño Muestral. Bogotá: Dirección Sistema Nacional de Información Estadística. Retrieved from https://www.dane.gov.co/files/EDI/anexos_generales/Metodologia_diseno_muestral_anexo1.pdf?phpMyAdmin=a9ticq8rv198vhk5e8cck52r11

Díaz-Narváez, V. P. (2017). Regresión logística y decisiones clínicas. Nutrición Hospitalaria, 34(6), 1505-1505. Retrieved from https://scielo.isciii.es/pdf/nh/v34n6/36_diaz.pdf

Google Developers. (2021, Julio 19). Clasificación: Exactitud. Retrieved from https://developers.google.com/machine-learning/crash-course/classification/accuracy

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Gujarati, D., & Porter, D. (2010, Julio 8). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Retrieved from Homocedasticidad.

Haskett, D. R. (2014, Octubre 10). “Mitochondrial DNA and Human Evolution” (1987), by “Mitochondrial DNA and Human Evolution” (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson. Retrieved from The Embryo Project Encyclopedia: https://embryo.asu.edu/pages/mitochondrial-dna-and-human-evolution-1987-rebecca-louise-cann-mark-stoneking-and-allan

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

Instituto dei Sistemi Complessi. (2021, Febrero 27). Topolical vs Metric Distance. Retrieved from Biological Systems: https://www.isc.cnr.it/research/topics/physical-biology/biological-systems/topological-vs-metric-distance/

Instituto Nacional de Estadística y Censos de Costa Rica. (2016, Julio). Manual de Clasificación Geográfica con Fines Estadísticos de Costa Rica. Retrieved from Biblioteca Virtual: https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/meinstitucionalmcgfecr.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Retrieved from https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2021, 7 14). Factor de Expansión. Retrieved from INEC: https://www.inec.cr/sites/default/files/_book/F.html

Instituto Nacional de Estadística y Censos de la República Argentina. (2019). Encuesta de Actividades de Niños, Niñas y Adolescentes 2016-2017. Factores de expansión, estimación y cálculo de los errores por muestra para el dominio rural. Buenos Aires: Ministerio de Hacienda. Retrieved from https://www.indec.gob.ar/ftp/cuadros/menusuperior/eanna/anexo_bases_eanna_rural.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

Jose, K. (2020, Junio 27). Graph Theory | Isomorphic Trees. Retrieved from Towards Data Science: https://towardsdatascience.com/graph-theory-isomorphic-trees-7d48aa577e46

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Retrieved from https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Kolmogórov, A. N., & Fomin, S. V. (1978). Elementos de la Teoría de Funciones y del Análisis Funcional (Tercera ed.). (q. e.-m. Traducido del ruso por Carlos Vega, Trans.) Moscú: MIR.

Liao, T. F. (1994). INTERPRETING PROBABILITY MODELS. Logit, Probit, and Other Generalized Linear Models. Iowa: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Lipschutz, S. (1992). Álgebra Lineal. Madrid: McGraw-Hill.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

McCullagah, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135(3), 370-384.

Online Stat Book. (2021, Julio 15). Levels of an Independent Variable. Retrieved from Independent and dependent variables: https://onlinestatbook.com/2/introduction/variables.html

Patil, G. P., & Shorrock, R. (1965). On Certain Properties of the Exponential-type Families. Journal of the Royal Statistical, 27(1), 94-99.

Perry, J. (2014, Abril 2). NORM TO/FROM METRIC. Retrieved from The University of Southern Mississippi: https://www.math.usm.edu/perry/old_classes/mat681sp14/norm_and_metric.pdf

Ritchey, F. (2002). ESTADÍSTICA PARA LAS CIENCIAS SOCIALES. El potencial de la imaginación estadística. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.

Samuels, S. (2014, 11 19). Can I get to an approximation of the population with knowledge of the expansion factor? Retrieved from Cross Validated. StackExchange: https://stats.stackexchange.com/questions/124750/can-i-get-to-an-approximation-of-the-population-with-knowledge-of-the-expansion

StackExchange Cross Validated. (2017, Febrero 2). “Least Squares” and “Linear Regression”, are they synonyms? Retrieved from What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

StackExchange Data Science. (2016, Junio 19). Is GLM a statistical or machine learning model? Retrieved from https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (2014, Marzo 15). Supervised Learning, Unsupervised Learning, Regression. Retrieved from https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

TalkStats. (2011, Noviembre 29). SPSS. Retrieved from Forums: http://www.talkstats.com/threads/what-is-the-difference-between-a-factor-and-a-covariate-for-multinomial-logistic-reg.21864/

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Retrieved from https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

van den Berg, R. G. (2021, Julio 15). Measurement Levels – What and Why? Retrieved from SPSS Tutorials: https://www.spss-tutorials.com/measurement-levels/

Weisstein, E. W. (2021, Julio 15). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 21). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 18). Smooth Function. Retrieved from Wolfram MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SmoothFunction.html

Wikimedia. (2021, Abril 6). Commons. Retrieved from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg

Wikipedia. (2021, Julio 6). Graph isomorphism. Retrieved from Morphism: https://en.wikipedia.org/wiki/Graph_isomorphism

Wikipedia. (2021, Mayo 21). Iterative proportional fitting. Retrieved from Statistical algorithms: https://en.wikipedia.org/wiki/Iterative_proportional_fitting

Wikipedia. (2021, Febrero 25). Iteratively reweighted least squares. Retrieved from Least squares: https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares

Wikipedia. (2021, Julio 13). Logistic function. Retrieved from Growth curves: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Mayo 22). Logistic regression. Retrieved from Regression models: https://en.wikipedia.org/wiki/Logistic_regression

Wikipedia. (2021, Junio 14). Logit. Retrieved from Special functions: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Julio 8). Lp space. Retrieved from Measure theory: https://www.wikiwand.com/en/Lp_space

Wikipedia. (2021, Abril 15). Odds. Retrieved from Wagering: https://en.wikipedia.org/wiki/Odds

Wikipedia. (2021, Julio 10). Precision and recall. Retrieved from Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

Wooldridge, J. (2010). Econometric Analysis of Cross Section and Panel Data (Segunda ed.). Cambridge, Massachusetts: MIT Press.

GENERALIDADES DE LA TEORÍA DEL APRENDIZAJE ESTADÍSTICO

ISADORE NABI

VI. Referencias

Barrios, J. (19 de Julio de 2019). La matriz de confusión y sus métricas . Obtenido de Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Google Developers. (19 de Julio de 2021). Clasificación: Exactitud. Obtenido de https://developers.google.com/machine-learning/crash-course/classification/accuracy

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

StackExchange Data Science. (19 de Junio de 2016). Is GLM a statistical or machine learning model? Obtenido de https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (15 de Marzo de 2014). Supervised Learning, Unsupervised Learning, Regression. Obtenido de https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

Wikipedia. (10 de Julio de 2021). Precision and recall. Obtenido de Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

MODELOS LINEALES GENERALIZADOS

isadore nabi

RESUMEN DEL FUNCIONAMIENTO DEL ALGORITMO IRLS

Fuente: https://www.semanticscholar.org/paper/Iterative-and-recursive-least-squares-estimation-Hu/1d19140f9aed669127df0302cdf16a8f3ec04c26

IV. Referencias

Allen, M. (2017). The SAGE Encyclopedia of COMMUNICATION RESEARCH METHODS. London: SAGE Publications, Inc.

AMERICAN PSYCHOLOGICAL ASSOCIATION. (15 de Julio de 2021). level. Obtenido de APA Dictionary of Pyschology: https://dictionary.apa.org/level

AMERICAN PYSCHOLOGICAL ASSOCIATION. (15 de Julio de 2021). factor. Obtenido de APA Dictionary of Pyschology: https://dictionary.apa.org/factor

AMERICAN PYSCHOLOGY ASSOCIATION. (15 de Julio de 2021). logistic regression (LR). Obtenido de APA Dictionary of Pyschology: https://dictionary.apa.org/logistic-regression

Bhuptani, R. (13 de Julio de 2020). Quora. Obtenido de What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Burrus, C. S. (7 de Julio de 2021). Iterative Reweighted Least Squares. Obtenido de https://cnx.org/exports/[email protected]/iterative-reweighted-least-squares-12.pdf

Centro Centroamericano de Población. (28 de Abril de 2021). Variables y escalas de medición. Obtenido de Universidad de Costa Rica: https://ccp.ucr.ac.cr/cursos/epidistancia/contenido/2_escmed.html

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Gujarati, D., & Porter, D. (8 de Julio de 2010). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Obtenido de Homocedasticidad.

Haskett, D. R. (10 de Octubre de 2014). “Mitochondrial DNA and Human Evolution” (1987), by “Mitochondrial DNA and Human Evolution” (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson. Obtenido de The Embryo Project Encyclopedia: https://embryo.asu.edu/pages/mitochondrial-dna-and-human-evolution-1987-rebecca-louise-cann-mark-stoneking-and-allan

Kolmogórov, A. N., & Fomin, S. V. (1978). Elementos de la Teoría de Funciones y del Análisis Funcional (Tercera ed.). (q. e.-m. Traducido del ruso por Carlos Vega, Trad.) Moscú: MIR.

Lipschutz, S. (1992). Álgebra Lineal. Madrid: McGraw-Hill.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135(3), 370-384.

Online Stat Book. (15 de Julio de 2021). Levels of an Independent Variable. Obtenido de Independent and dependent variables: https://onlinestatbook.com/2/introduction/variables.html

Patil, G. P., & Shorrock, R. (1965). On Certain Properties of the Exponential-type Families. Journal of the Royal Statistical, 27(1), 94-99.

Perry, J. (2 de Abril de 2014). NORM TO/FROM METRIC. Obtenido de The University of Southern Mississippi: https://www.math.usm.edu/perry/old_classes/mat681sp14/norm_and_metric.pdf

Ritchey, F. (2002). ESTADÍSTICA PARA LAS CIENCIAS SOCIALES. El potencial de la imaginación estadística. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.

StackExchange Cross Validated. (2 de Febrero de 2017). “Least Squares” and “Linear Regression”, are they synonyms? Obtenido de What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

TalkStats. (29 de Noviembre de 2011). SPSS. Obtenido de Forums: http://www.talkstats.com/threads/what-is-the-difference-between-a-factor-and-a-covariate-for-multinomial-logistic-reg.21864/

van den Berg, R. G. (15 de Julio de 2021). Measurement Levels – What and Why? Obtenido de SPSS Tutorials: https://www.spss-tutorials.com/measurement-levels/

Wikipedia. (21 de Mayo de 2021). Iterative proportional fitting. Obtenido de Statistical algorithms: https://en.wikipedia.org/wiki/Iterative_proportional_fitting

Wikipedia. (25 de Febrero de 2021). Iteratively reweighted least squares. Obtenido de Least squares: https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares

Wikipedia. (8 de Julio de 2021). Lp space. Obtenido de Measure theory: https://www.wikiwand.com/en/Lp_space

JUSTIFICACIÓN TEÓRICA DEL USO DE MÉTODOS DE REGRESIÓN SOBRE INSTRUMENTOS PSICOMÉTRICOS: EL CASO DE LA ENCUESTA.

ISADORE NABI

Como señala (Cochran, 1991, pág. 195), “Uno de los rasgos de la estadística teórica es la creación de una vasta teoría que discute los métodos de obtención de buenas estimaciones a partir de los datos. En el desarrollo de la teoría, específicamente para encuestas de muestreo, se han utilizado poco estos conocimientos, por dos causas principales. Primero, en las encuestas que contienen un gran número de atributos, es una gran ventaja, aunque se disponga de máquinas computadoras, el poder utilizar procedimientos de estimación que requieran poco más que simples sumas, en tanto que los métodos superiores de estimación de la estadística teórica, como lo son la máxima verosimilitud, podrían necesitar una serie de aproximaciones sucesivas antes de encontrar una estimación (…) La mayoría de los métodos de investigación de la estadística teórica suponen que se conoce la forma funcional de la distribución de frecuencia que sigue a los datos de la muestra, y el método de estimación de estimación está cuidadosamente engranado de acuerdo a este tipo de distribución. En la teoría de encuestas por muestreo se ha preferido hacer, cuando más, algunos supuestos respecto a esta distribución de frecuencia. Esta actitud resulta razonable para tratar con encuestas en las que el tipo de distribución puede variar de un atributo a otro, y cuando no deseamos detenernos a examinarlas todas, antes de decidir cómo hacer cada estimación. En consecuencia, actualmente, las técnicas de estimación para el trabajo de encuestas por muestreo son de alcances restringidos. Ahora consideraremos dos técnicas, el método de razón (…) y el método de regresión línea (…)” Así, “Al igual que la estimación de razón, la regresión lineal se ha diseñado para incrementar la precisión en el uso de una variable auxiliar  correlacionada con .” (Cochran, 1991, pág. 239).

SOBRE LOS ISOMORFISMO DE GRAFO

ISADORE NABI

En teoría de grafos, se define como grafo al par G=(V,E), en donde V es el conjunto de aquellos elementos que son vértices y E es el conjunto de pares de vértices cuyos elementos se denominan aristas. A continuación, se presenta un ejemplo simple de grafo con tres vértices (círculos azules) y tres aristas (líneas rectas negras), específicamente un triángulo rectángulo visto como grafo.

Fuente: (Wikimedia, 2021).

Un isomorfismo entre dos grafos G1 y G2 es una relación funcional biyectiva (i.e., que establece una relación uno-a-uno entre los elementos de dos conjuntos) entre los vértices de G1 y G2, que adopta la forma f: V(G1)–>V(G2), en la que cualesquiera dos vértices u, v ∈ G1 son adyacentes (relación entre dos vértices en la que ambos son extremos de la misma arista) si y solo si sus reflejos o imágenes matemáticas f(u) y f(v) son adyacentes en G2. La característica fundamental de un isomorfismo de grafo es que es una relación funcional biyectiva que preserva las aristas que caracterizan al grafo. Que esta transformación matemática preserve las aristas implica que las distancias entre los vértices, analizados estos “de dos en dos”, no cambian.

Son precisamente estas distancias a las que se les conoce como distancias relativas dentro de la estructura matemática, en contraste con las distancias absolutas que son medidas como distancias de los vértices considerados individualmente. Un ejemplo de ello se muestra a continuación.

Fuente: (Jose, 2020).

Los dos grafos anteriores son isomórficos entre sí, i.e., poseen la misma estructura interna o estructura topológica. A continuación, se presenta un ejemplo numérico de ello, en consonancia con lo anteriormente expuesto.

Fuente: (Wikipedia, 2021).

Las diferencias concretas entre las distancias topológicas y las distancias métricas pueden observarse con nitidez en lo relativo al desarrollo teórico y aplicado de modelos que explican el comportamiento colectivo de animales, como lo son bandadas de aves, bancos de peces, etc. Esto es un equivalente concreto a nivel biológico del concepto matemático abstracto de la manera en que se agrupan en subconjuntos los elementos de un determinado conjunto).

Como señala el Instituto de Sistemas Complejos de Italia (Instituto dei Sistemi Complessi, 2021), todos los modelos existentes sobre el comportamiento colectivo de los animales asumen que la interacción entre los diferentes individuos depende de la distancia métrica, al igual que en la Física. Esto implica, por ejemplo, que dos pájaros separados por 5 metros interactúan con más fuerza que dos pájaros separados por 10 metros. Como se señala en la fuente citada, los modelos desarrollados por biólogos se basan en un esquema de “zonas de comportamiento”, donde cada zona está asociada a uno de los tres componentes básicos de todos los modelos: repulsión de corto alcance, alineación, atracción de largo alcance. Los modelos desarrollados por físicos, por otro lado, usaban principalmente una función de fuerza única. Sin embargo, los dos enfoques son sustancialmente equivalentes y lo que importa es que ambos se basan en un paradigma métrico.

El punto crucial es que, dentro del paradigma métrico, el número de vecinos con los que interactúa cada individuo no es una constante, sino que depende de la densidad. Por ejemplo, supóngase que cada ave interactúa con todos los vecinos dentro de un rango de 5 metros. El número de vecinos dentro de los 5 metros será grande en una bandada densa y pequeña en una bandada escasa. Entonces, dentro del paradigma métrico, el número de vecinos que interactúan no es una constante, sino que depende de la densidad. Lo que es constante es el rango métrico de la interacción (5 metros en el ejemplo anterior).

El paradigma métrico parece muy razonable a primera vista. Los animales son buenos para evaluar distancias, por lo que tiene sentido asumir que la fuerza de sus lazos mutuos depende de la distancia. Además, los modelos métricos demostraron ser capaces de reproducir cualitativamente el comportamiento de las bandadas. Por lo tanto, no había razón para cuestionar el paradigma métrico, en ausencia de datos empíricos. Y dado que hasta el momento no se disponía de datos empíricos, todos los modelos utilizaron una interacción métrica.

Los primeros datos empíricos sobre grandes bandadas de estorninos fueron obtenidos por el nodo INFM-CNR dentro del proyecto STARFLAG (esto hace referencia a un proyecto sobre comportamiento colectivo de animales coordinado por el INFM-CNR, organismo que pertenece a la institución citada). Al reconstruir las posiciones en 3D de aves individuales, fue posible mapear la distribución promedio de los vecinos más cercanos (Figura 2), lo que proporciona la caracterización más clara de la estructura de las aves dentro de una bandada.

Así, “Dado un ave de referencia, medimos la orientación angular de su vecino más cercano con respecto a la dirección de movimiento de la bandada, es decir, el rumbo y la elevación del vecino. Repetimos esto tomando a todos los individuos dentro de una bandada como ave de referencia, y de esta manera mapeamos la posición espacial promedio de los vecinos más cercanos.” (Instituto dei Sistemi Complessi, 2021). El fragmento de la cita bibliográfica anterior en negrita y cursiva es en esencia la lógica de tomar a los individuos “de dos en dos”, añadiendo a ello elementos que juegan un rol relevante en este contexto específico de aplicación de las nociones topológicas, como lo son el rumbo y la elevación; sin embargo, hay que decir que a nivel de teoría de grafos, también existen grafos cuyas aristas poseen dirección, los cuales por motivo de simplicidad no fueron expuestos, aunque no por ello deja de ser necesaria esta especificación.

Así, es posible pensar en este mapa como un mapa de la esfera alrededor de cada ave voladora. El centro del mapa es la dirección de avance, los polos son las direcciones hacia arriba y hacia abajo. El color en un punto dado del mapa indica la probabilidad de que el vecino más cercano del pájaro esté en esa dirección particular. Este mapa muestra una sorprendente falta de vecinos más cercanos a lo largo de la dirección del movimiento. Por tanto, la estructura de los individuos es fuertemente anisotrópica[1]. Esta anisotropía probablemente esté relacionada con el aparato visual de las aves. Sin embargo, el punto crucial es que esta anisotropía es el efecto de la interacción entre individuos, cualquiera que sea esta interacción.

Fuente: (Instituto dei Sistemi Complessi, 2021).

Para respaldar esta afirmación, calculamos la distribución de vecinos muy alejados del ave de referencia, por ejemplo, para el décimo vecino más cercano (mapa inferior en la figura).

Fuente: (Instituto dei Sistemi Complessi, 2021).

Esta distribución es uniforme, para garantizar una agregación de puntos completamente isótropa[2] y sin interacción, puesto que ello es una indicación empírica directa de afirmar que la interacción decae con la distancia: cuanto más separadas están dos aves, menor es su grado de correlación. Este resultado también demuestra que podemos usar la anisotropía para obtener información sobre la interacción. De hecho, se puede calcular el mapa de distribución angular[3] de los vecinos incluso para el segundo, tercer, cuarto vecino más cercano, etc., y observar cómo la estructura anisotrópica presente para los vecinos más cercanos se desvanece progresivamente a medida que aumenta el orden del vecino.

La desintegración de esta estructura anisotrópica con la distancia se puede cuantificar de forma precisa calculando el factor de anisotropía gamma[4].  Esta cantidad decae a su valor isotrópico (no interactivo) 1/3 a medida que aumenta el orden n-ésimo del vecino, de manera similar a una función de correlación estándar.

“Sin embargo, el punto crucial es que n es una distancia topológica, es decir, es una distancia medida en unidades de aves, en lugar de metros. A partir del factor de anisotropía podemos calcular el rango topológico, definido como el punto donde el factor de anisotropía se vuelve igual a su valor de no interacción. Este rango topológico es simplemente el número promedio de vecinos con los que interactúa cada ave. Claramente, dada la densidad de la bandada, también podemos definir una distancia métrica estándar y, por lo tanto, un rango métrico de la interacción. El rango métrico de interacción no es más que la distancia máxima de las aves dentro del rango topológico.” Fuente: (Instituto dei Sistemi Complessi, 2021).

Así, el punto importante es que la densidad de las bandadas varía mucho de una bandada a otra, y esto implica que el rango topológico y métrico no puede ser constante cuando la densidad varía. Para dilucidar este punto crucial, considérese dos bandadas con diferentes densidades. Si la interacción depende de la distancia métrica, entonces el rango en metros es el mismo en las dos bandadas, mientras que el número de individuos dentro de este rango es grande en la bandada más densa y pequeño en la más dispersa.

Fuente: (Instituto dei Sistemi Complessi, 2021).

Por el contrario, si la interacción depende de la distancia topológica, el rango en unidades de aves es constante en las dos bandadas, mientras que la distancia de estos n vecinos más cercanos es pequeña en la bandada más densa y grande en la más escasa.

La diferencia entre la hipótesis topológica y métrica es clara: en el escenario topológico, el número de individuos que interactúan es fijo. Por el contrario, en el escenario métrico, dicho número varía con la densidad; por ejemplo, dentro del mismo rango métrico puede haber 10 aves en una bandada muy densa y solo 1 ave en una muy escasa. Por lo tanto, los rangos topológicos y métricos no son caracterizaciones intercambiables de la interacción.

Por lo tanto, para comprender si lo que importa es la métrica o la distancia topológica, debemos medir cómo el rango métrico y topológico depende de la densidad de las bandadas. En promedio, para este caso de aplicación concreto se sostiene en la fuente citada que el rango topológico es igual a 6.5 aves. “Este resultado contrasta con la mayoría de los modelos y teorías de comportamiento animal colectivo actualmente en el mercado, que asumen un rango métrico de interacción.” Fuente: (Instituto dei Sistemi Complessi, 2021).

¿Por qué una interacción topológica y no métrica? El comportamiento colectivo de los animales se escenifica en un entorno natural convulso. Por tanto, el mecanismo de interacción formado por la evolución debe mantener la cohesión frente a fuertes perturbaciones, de las cuales la depredación es la más relevante. Creemos que la interacción topológica es el único mecanismo que otorga una cohesión tan robusta y, por lo tanto, una mayor aptitud biológica. Una interacción métrica es inadecuada para hacer frente a este problema: siempre que la distancia interindividual se hiciera mayor que el rango métrico, la interacción desaparecería, la cohesión se perdería y los rezagados se “evaporarían” de la agregación. Una interacción topológica, por el contrario, es muy robusta, ya que su fuerza es la misma a diferentes densidades. Al interactuar dentro de un número fijo de individuos, en lugar de metros, la agregación puede ser densa o escasa, cambiar de forma, fluctuar e incluso dividirse, pero manteniendo el mismo grado de cohesión. Por lo tanto, la interacción topológica es funcional para mantener la cohesión frente a las fuertes perturbaciones a las que está sujeta una bandada, típicamente depredación. Así, las distancias topológicas son aquellas distancias entre los elementos de un conjunto, o entre los componentes integrantes de un sistema dinámico, que se mantienen invariantes ante perturbaciones. Por ello, en línea con lo planteado en (Nabi, 2021) en el terreno de la biología molecular, las distancias topológicas denotan las propiedades características, i.e., la esencia, de los fenómenos naturales Lo que es más íntimo, más característico del comportamiento estudiado.

Finalmente, es necesario mencionar que existe evidencia de que el valor particular del rango topológico que encontramos (6.5) está relacionado con las capacidades cognitivas de las aves y, en particular, con sus habilidades pre numéricas[5].

REFERENCIAS

Instituto dei Sistemi Complessi. (27 de Febrero de 2021). Topolical vs Metric Distance. Obtenido de Biological Systems: https://www.isc.cnr.it/research/topics/physical-biology/biological-systems/topological-vs-metric-distance/

Jose, K. (27 de Junio de 2020). Graph Theory | Isomorphic Trees. Obtenido de Towards Data Science: https://towardsdatascience.com/graph-theory-isomorphic-trees-7d48aa577e46

Nabi, I. (14 de Marzo de 2021). HACIA UNA INTERPRETACIÓN DIALÉCTICA-MATERIALISTA DE LA TOPOLOGÍA GENERAL: GÉNESIS HISTÓRICA-TEÓRICA DE LA TOPOLOGÍA DESDE LA GEOMETRÍA Y LA TEORÍA DE CONJUNTOS. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/14/hacia-una-interpretacion-dialectica-materialista-de-la-topologia-general-genesis-historica-teorica-de-la-topologia-desde-la-geometria-y-la-teoria-de-conjuntos/

Oilfield Glossary en Español. (2021). gamma (γ). Obtenido de Geofísica: https://glossary.oilfield.slb.com/es/terms/g/gamma

The SEG Wiki. (8 de Abril de 2021). Isotropía Transversal. Obtenido de Dictionary: https://wiki.seg.org/wiki/Dictionary:Transverse_isotropy/es

Wikimedia. (6 de Abril de 2021). Commons. Obtenido de Wikipedia: https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg

Wikipedia. (6 de Julio de 2021). Graph isomorphism. Obtenido de Morphism: https://en.wikipedia.org/wiki/Graph_isomorphism


[1] La anisotropía es la propiedad general de la materia según la cual cualidades como elasticidad, temperatura, conductividad, velocidad de propagación de la luz, etc., varían según la dirección en que son examinadas.​ Un ente anisótropo puede presentar diferentes características según la dirección.

[2] La isotropía es la característica de algunos fenómenos en el espacio cuyas propiedades no dependen de la dirección en que son examinadas.

[3] La distribución angular de un conjunto de observaciones es la distribución de las direcciones hacia donde los electrones son emitidos dentro de un determinado sistema de coordenadas.

[4] Como se señala en (Oilfield Glossary en Español, 2021), el factor de anisotropía gamma es el parámetro de las ondas S para un medio en el cual las propiedades elásticas exhiben isotropía transversal vertical [implica propiedades elásticas que son las mismas en cualquier dirección perpendicular a un eje de simetría y tiene cinco constantes elásticas independientes, como se señala en (The SEG Wiki, 2021)]. Gamma (γ) es el parámetro de anisotropía de las ondas S y equivale a mitad de la razón de la diferencia entre las velocidades de las ondas SH que se propagan en sentido horizontal y vertical, al cuadrado, dividida por la velocidad de las ondas SH que se propagan verticalmente al cuadrado; una onda SH es una onda de corte polarizada horizontalmente.”

[5] Para el caso de los humanos, las habilidades pre numéricas son aquellas necesarias antes de aprender sobre los números, tales como comparar, clasificar, identificar, reunir, establecer relaciones uno a uno, seriar, etc.

ANÁLISIS DE LA METODOLOGÍA APLICADA POR LOS INSTITUTOS NACIONALES DE ESTADÍSTICA Y CENSOS EN LA CLASIFICACIÓN CUALITATIVA DEL NIVEL DE INGRESO

ISADORE NABI

REFERENCIAS

Aldridge, H. (2017). How do we measure? Toronto: Maytree.

Arias Chavarría, E. (2019). ESTADO, NEOLIBERALISMO Y EMPRESARIOS EN COSTA RICA:LA COYUNTURA DEL TLC. Revista de Ciencias Sociales de la Universidad de Costa Rica, 69-86. Obtenido de https://www.redalyc.org/jatsRepo/153/15360186004/html/index.html

Arias Ramírez, R. (2020). Pobreza y desigualdad en Costa Rica: una mirada más allá de la distribución de los ingresos. Estudios del Desarrollo Social: Cuba y América Latina, 1-26. Obtenido de http://scielo.sld.cu/pdf/reds/v8n1/2308-0132-reds-8-01-16.pdf

autocosts. (6 de Mayo de 2019). Coding rules. Obtenido de GitHub: https://github.com/jfoclpf/autocosts/blob/master/contributing.md

autocosts. (2 de Noviembre de 2020). Core. Obtenido de https://github.com/jfoclpf/autocosts/tree/master/src/client/core

autocosts. (27 de Abril de 2021). Costos de Automóviles de Costa Rica. Obtenido de GitHub: https://autocostos.info/cr/stats

Barría, C. (16 de Mayo de 2019). Cómo Costa Rica se convirtió en uno de los países más innovadores de América Latina (y cuáles son algunos de los inventos más sorprendentes). Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-48193736

Baumol, W. (1983). Marx and the Iron Law of Wages. The American Economic Review, 303-308.

Blanchard, O., & Leigh, D. (2013). Growth Forecast Errors and Fiscal Multipliers. Washington: International Monetary Fund. Obtenido de https://www.imf.org/external/pubs/ft/wp/2013/wp1301.pdf

Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (Novena ed.). Boston: Cengage Learning.

Case, K., Fair, R., & Oster, S. (2012). Principles of Economics (Décima ed.). Boston: Pearson Education.

Cisneros, M. F. (29 de Mayo de 2016). ¿Carro nuevo o usado? Esto es lo que le ofrecen las entidades financieras? Obtenido de FINANZAS: https://www.elfinancierocr.com/finanzas/carro-nuevo-o-usado-esto-es-lo-que-le-ofrecen-las-entidades-financieras/FFPKCXEYYBB4BGAQ7GFRK3GNUU/story/

Cisneros, M. F. (21 de Febrero de 2020). ¿Quiere comprar una casa? Deberá pagar al menos ¢7.000 por cada millón que le financien. Obtenido de El Financiero: https://www.elfinancierocr.com/finanzas/quiere-comprar-una-casa-debera-pagar-al-menos/7EXHTMCZ2RESBERYYQW4JQZYCQ/story/

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Delgado Jiménez, F. (2013). EL EMPLEO INFORMAL EN COSTA RICA: CARACTERÍSTICAS DE LOS OCUPADOS Y SUS PUESTOS DE TRABAJO. Ciencias Económicas, XXXI(2), 35-51.

Díaz Arias, D. (2019). Historia del neoliberalismo en Costa Rica. Avances de Investigación CIHAC, 1-45. Obtenido de https://cihac.fcs.ucr.ac.cr/wp-content/uploads/2019/08/David-Diaz-Historia-del-Neoliberalismo-CIHAC.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Encyclopaedia Britannica. (27 de Abril de 2021). Iron Law of Wages. Obtenido de Economics: https://www.britannica.com/topic/Iron-Law-of-Wages

Expatistan. (27 de Abril de 2021). ¿Cómo funcionan el índice y las comparaciones? Obtenido de https://www.expatistan.com/es/como-funciona

Expatistan. (Abril de 2021). Costo de vida en San Jose, Costa Rica, Costa Rica. Obtenido de https://www.expatistan.com/es/costo-de-vida/san-jose-costa-rica

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Foro Económico Mundial. (12 de Abril de 2019). 50 years of US wages, in one chart. Obtenido de https://www.weforum.org/agenda/2019/04/50-years-of-us-wages-in-one-chart/

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación Promotora de Vivienda. (28 de Abril de 2021). Informe Nacional. Situación de Vivienda y Desarrollo Urbano 2016. Obtenido de https://www.fuprovi.org/wp-content/uploads/2018/02/situacion-del-sector-vivienda-y-desarrollo-urbano-costa-rica-2016.pdf

Hidalgo Víquez, C., Andrade Pérez, L., Rodríguez Gonzáles, S., Dumani Echandi, M., Alvarado Molina, N., Cerdas Nuñez, M., & Quirós Blanco, G. (2020). Análisis de la canasta básica alimentaria de Costa Rica: oportunidades desde la alimentación y nutrición. Población y Salud en Mesoamérica, 1-24. Obtenido de https://revistas.ucr.ac.cr/index.php/psm/article/view/40822/42616

i-base. (27 de Abril de 2021). Diet: a balanced diet and your health. Obtenido de GUIDES: https://i-base.info/guides/side/diet-a-balanced-diet-and-your-health

Instituto Nacional de Estadística y Censos de Costa Rica. (2010). Actualización metodológica para la medición del empleo y la pobreza. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documentos/pobreza_y_presupuesto_de_hogares/pobreza/metodologias/documentos_metodologicos/mepobrezaenaho2010-02.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre gastos de los hogares. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-gasto.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Coeficiente de Gini por hogar y per cápita, julio 2010 – 2020. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/repobrezaenaho2010-2020-01_gini.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Nivel de pobreza por LP según características de los hogares y las personas, julio 2019 y julio 2020. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenaho2020-linea_de_pobreza.xlsx

Jaccard, N. (29 de Septiembre de 2013). ¿Cómo es ser pobre en Suiza? Obtenido de Revista Semana: https://www.semana.com/mundo/articulo/suiza-ser-probre/359491-3/

Kleiber, C. (2007). The Lorenz curve in economics and econometrics. University of Basel. Basel: Center of Business and Economics. Obtenido de https://www.econstor.eu/bitstream/10419/123375/1/wp2007-09.pdf

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Obtenido de https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Laplante, P. A. (2001). DICTIONARY OF COMPUTER SCIENCE, ENGENEERING AND TECHNOLOGY. Boca Ratón, Florida, Estados Unidos: CRC Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

Madrigal, L. M. (5 de Diciembre de 2018). Hacienda revela identidad de grandes empresas que reportan cero ganancias reiteradamente. Obtenido de DELFINO: https://delfino.cr/2018/12/hacienda-revela-identidad-de-grandes-empresas-que-reportan-cero-ganancias-reiteradamente

Messina, J., & Silva, J. (2019). Twenty Years of Wage Inequality in Latin America. Washington: Inter-American Development Bank.

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Online Currency Converter. (27 de Abril de 2021). Swiss franc (CHF) and United States dollar (USD) Year 2013 Exchange Rate History. Source: CBR. Obtenido de https://freecurrencyrates.com/en/exchange-rate-history/CHF-USD/2013/cbr

preciosmundi. (Abril de 2021). Precios de ropa y calzado en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-ropa-calzado

preciosmundi. (Abril de 2021). Precios de transportes y servicios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-transporte-servicios

preciosmundi. (Abril de 2021). Precios de vivienda y salarios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-vivienda-salarios

preciosmundi. (Abril de 2021). Precios en supermercados en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precios-supermercado

PROGRAMA ESTADO DE LA NACIÓN. (2018). ESTADO DE LA NACIÓN EN DESARROLLO HUMANO SOSTENIBLE. Pavas: Consejo Nacional de Rectores de Costa Rica (CONARE). Obtenido de http://www.asamblea.go.cr/sd/Documents/analisis/Inforne%20Estado%20de%20%20La%20Naci%C3%B3n%202018.pdf

Quirós, M. (17 de Junio de 2017). La vivienda en alquiler: la realidad y los retos. Obtenido de El Financiero: https://www.elfinancierocr.com/opinion/la-vivienda-en-alquiler-la-realidad-y-los-retos/LJCFGLYCXNHL3H2VWGGCK5K4UI/story/

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Salazar Álvarez, G. (7 de Noviembre de 2018). Inflación y costo de vida en la Costa Rica actual. Obtenido de elmundo.cr: https://www.elmundo.cr/economia-y-negocios/inflacion-y-costo-de-vida-en-la-costa-rica-actual/

Seixo, N. (28 de Abril de 2021). ransiciones de la Edad Media a la Edad ModernaRecensión de El debate Brenner. Estructura de clases agraria y desarrollo económico en la Europa preindustrial. Obtenido de http://www.uned-historia.es/sites/default/files/Apuntes/Nacho%20Seixo%20-%20Transiciones%20de%20la%20Edad%20Media%20a%20la%20Edad%20Moderna.pdf

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Obtenido de https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

Vargas Solís, L. P. (2016). El Proyecto Histórico Neoliberal en Costa Rica (1984-2015): Devenir histórico y crisis. Revista Rupturas, 147-162. doi:https://doi.org/10.22458/rr.v1i1.1167

Ventas, L. (5 de Febrero de 2018). ¿Es Costa Rica realmente tan “pura vida”? Las heridas ocultas tras la fachada de país próspero y estable. Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-america-latina-42879401

Weisstein, E. (22 de Abril de 2021). Lorenz Curve. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/LorenzCurve.html

Wikipedia. (10 de Abril de 2021). Gini coefficient. Obtenido de Income inequality metrics: https://en.wikipedia.org/wiki/Gini_coefficient

Wikipedia. (27 de Febrero de 2021). Lorenz curve. Obtenido de Economic curves: https://en.wikipedia.org/wiki/Lorenz_curve

World Health Organization. (29 de Abril de 2020). Salt reduction. Obtenido de Fact sheets: https://www.who.int/news-room/fact-sheets/detail/salt-reduction