FUNDAMENTOS GENERALES DE LA PROGRAMACIÓN EN R STUDIO: UN ENFOQUE ESTADÍSTICO-MATEMÁTICO

ISADORE NABI

FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE II, CÓDIGO EN R STUDIO CON COMENTARIOS

ISADORE NABI

##ESTABLECER EL DIRECTORIO DE TRABAJO

setwd(“(…)”)

##LEER EL ARCHIVO DE DATOS. EN ESTE CASO, SUPÓNGASE QUE LOS DATOS SON DE UNA MUESTRA ALEATORIA DE 21 TIENDAS UBICADAS EN DIFERENTES PARTES DEL PAÍS Y A LAS CUALES SE LES REALIZÓ VARIOS ESTUDIOS. PARA ELLO SE MIDIERON ALGUNAS VARIABLES QUE SE PRESENTAN A CONTINUACIÓN

###- menor16= es un indicador de limpieza del lugar, a mayor número más limpio. 

###- ipc= es un indice de producto reparado con defecto, indica el % de producto que se pudo reparar y posteriormente comercializar.

###- ventas= la cantidad de productos vendidos en el último mes.

read.table(“estudios.txt”)

## CREAR EL ARCHIVO Y AGREGAR NOMBRES A LAS COLUMNAS

estudios = read.table(“estudios.txt”, col.names=c(“menor16″,”ipc”,”ventas”))

names(estudios)

nrow(estudios)

ncol(estudios)

dim(estudios)

## REVISAR LA ESTRUCTURA DEL ARCHIVO Y CALCULAR LA MEDIA, LA DESVIACIÓN ESTÁNDAR Y LOS CUANTILES PARA LAS VARIABLES DE ESTUDIO Y, ADICIONALMENTE, CONSTRÚYASE UN HISTOGRAMA DE FRECUENCIAS PARA LA VARIABLE “VENTAS”

str(estudios)

attach(estudios)

ventas

###Nota: la función “attach” sirve para adjuntar la base de datos a la ruta de búsqueda R. Esto significa que R busca en la base de datos al evaluar una variable, por lo que se puede acceder a los objetos de la base de datos simplemente dando sus nombres.

###Nota: Al poner el comando “attach”, la base de datos se adjunta a la dirección de búsqueda de R. Entonces ahora pueden llamarse las columnas de la base de datos por su nombre sin necesidad de hacer referencia a la base de datos ventas es una columna -i.e., una variable- de la tabla estudios). Así, al escribrlo, se imprime (i.e., se genera visualmente para la lectura ocular)

## CALCULAR LOS ESTADÍSTICOS POR VARIABLE Y EN CONJUNTO

mean(ventas)

sd(ventas)

var(ventas)

apply(estudios,2,mean)

apply(estudios,2,sd)

###Nota: la función “apply” sirve para aplicar otra función a las filas o columnas de una tabla de datos

###Nota: Si en “apply” se pone un “1” significa que aplicará la función indicada sobre las filas y si se pone un “2” sobre las columnas

## APLICAR LA FUNCIÓN “quantile”.

quantile(ventas) ###El cuantil de función genérica produce cuantiles de muestra correspondientes a las probabilidades dadas. La observación más pequeña corresponde a una probabilidad de 0 y la más grande a una probabilidad de 1.

apply(estudios,2,quantile)

###Nótese que para aplicar la función “apply” debe haberse primero “llamado” (i.e., escrito en una línea de código) antes la función que se aplicará (en este caso es la función “quantile”).

(qv = quantile(ventas,probs=c(0.025,0.975)))

###Aquí se está creando un vector de valores correspondientes a determinada probabilidad (las ventas, en este caso), que para este ejemplo son probabilidades de 0.025 y 0.975 de probabilidad, que expresan determinada proporción de la unidad de estudio que cumple con una determinada característica (que en este ejemplo esta proporción es el porcentaje de tiendas que tienen determinado nivel de ventas -donde la característica es el nivel de ventas-).

## GENERAR UN HISTOGRAMA DE FRECUENCIAS PARA LA COLUMNA “ventas”

hist(ventas)

abline(v=qv,col=2)

###Aquí se indica con “v” el conjunto de valores x para los cuales se graficará una línea. Como se remite a “qv” (que es un vector numérico de dos valores, 141 y 243) en el eje de las x, entonces graficará dos líneas color rojo (una en 141 y otra en 243).

###Aquí “col” es la sintaxis conocida como parte de los “parámetros gráficos” que sirve para especificar el color de las líneas

hist(ventas, breaks=7, col=”red”, xlab=”Ventas”, ylab=”Frecuencia”,

     main=”Gráfico

   Histograma de las ventas”)

detach(estudios)

###”breaks” es la indicación de cuántas particiones tendrá la gráfica (número de rectángulos, para este caso).

## GENERAR UNA DISTRIBUCIÓN N(35,4) CON NÚMEROS PSEUDOALEATORIOS PARA UN TAMAÑO DE MUESTRA n=1000

y = rnorm(1000,35,2)

hist(y)

qy = quantile(y,probs=c(0.025,0.975))

hist(y,freq=F)

abline(v=qy,col=2)

lines(density(y),col=2) #”lines” es una función genérica que toma coordenadas dadas de varias formas y une los puntos correspondientes con segmentos de línea.

## GENERAR UNA FUNCIÓN CON LAS VARIABLES n (CANTIDAD DE DATOS), m (MEDIA MUESTRAL) y  s (DESVIACIÓN ESTÁNDAR MUESTRAL) QUE ESTIME Y GRAFIQUE, ADEMÁS DE LOS CÁLCULOS DEL INCISO ANTERIOR, LA MEDIA.

plot.m = function(n,m,s) {

  y = rnorm(n,m,s)

  qy = quantile(y,probs=c(0.025,0.975))

  hist(y,freq=F)

  abline(v=qy,col=2)

  lines(density(y),col=2) ###Aquí se agrega una densidad teórica (una curva que dibuja una distribución de probabilidad -de masa o densidad- de referencia), la cual aparece en color rojo.

  mean(y)

}

## OBTENER UNA MUESTRA DE TAMAÑO n=10 DE N(100, 15^2)

plot.m(10000,100,15)

###Nótese que formalmente la distribución normal se caracteriza siempre por su media y varianza, aunque en la sintaxis “rnorm” de R se introduzca su media y la raíz de su varianza (la desviación estándar muestral)

##Generar mil repeticiones e ingresarlas en un vector. Compárense sus medias y desviaciones estándar.

n=10000; m=100;s=15

I = 1000 ###”I” son las iteraciones

medias = numeric(I)

for(i in 1:I)           {#”for” es un bucle (sintaxis usada usualmente para crear funciones personalizadas)

  sam=rnorm(n,m,s) ###Aquí se crea una variable llamada “sam” (de “sample”, i.e., muestra) que contiene una la distribución normal creada con números pseudoaleatorios.

  medias[i]=mean(sam)   } ###”sam” se almacena en la i-ésima posición la i-ésima media generada con “rnorm” que le corresponde dentro del vector numérico de iteraciones (el que contiene las medias de cada iteración) medias[i] (que contiene los elementos generados con la función “mean(sam)”).

###Un bucle es una interrupción repetida del flujo regular de un programa; pueden concebirse como órbitas (en el contexto de los sistemas dinámicos) computacionales. Un programa está diseñado para ejecutar cada línea ordenadamente (una a una) de forma secuencial 1,2,3,…,n. En la línea m el programa entiende que tiene que ejecutar todo lo que esté entre la línea n y la línea m y repetirlo, en orden secuencial, una cantidad x de veces. Entonces el flujo del programa sería, para el caso de un flujo regular  1,2,3,(4,5,…,m),(4,5,…,m),…*x,m+1,m+2,…,n.

## UTILIZAR LA VARIABLE “medias[i]” GENERADA EN EL INCISO ANTERIOR PARA DETERMINAR LA DESVIACIÓN ESTÁNDAR DE ESE CONJUNTO DE MEDIAS (ALMACENADO EN “medias[i]”) Y DETERMINAR SU EQUIVALENCIA CON EL ERROR ESTÁNDAR DE LA MEDIA (e.e.)

###Lo anterior evidentemente implica que se está construyendo sintéticamente (a través de bucles computacionales) lo que, por ejemplo, en un laboratorio botánico se registra a nivel de datos (como en el que Karl Pearson y Student hacían sus experimentos y los registraban estadísticamente) y luego se analiza en términos de los métodos de la estadística descriptiva e inferencial (puesto que a esos dominios pertenece el e.e.).

sd(medias)     ### desviación de la distribución de las medias

(ee = s/sqrt(n)  )### equivalencia teórica

## COMPARAR LA DISTRIBUCIÓN DE MEDIAS

m

mean(medias)

## GRAFICAR LA DISTRIBUCIÓN DE MEDIAS GENERADA EN EL INCISO ANTERIOR

hist(medias)

qm = quantile(medias,probs=c(0.025,0.975))

hist(medias,freq=F)

abline(v=qm,col=2)

lines(density(medias),col=2)

## GENERAR UN INTERVALO DE CONFIANZA CON UN NIVEL DE 0.95 PARA LA MEDIA DE LAS VARIABLES SUJETAS A ESTUDIO

attach(estudios)

### Percentil 0.975 de la distribución t-student para 95% de área bajo la curva

n = length(ventas) ###Cardinalidad o módulo del conjunto de datos

t = qt(0.975,n-1) ###valor t de la distribución t de student correspondiente a un nivel de probabilidad y n-1 gl

###Se denominan pruebas t porque todos los resultados de la prueba se basan en valores t. Los valores T son un ejemplo de lo que los estadísticos llaman estadísticas de prueba. Una estadística de prueba es un valor estandarizado que se calcula a partir de datos de muestra durante una prueba de hipótesis. El procedimiento que calcula la estadística de prueba compara sus datos con lo que se espera bajo la hipótesis nula (fuente: https://blog.minitab.com/en/adventures-in-statistics-2/understanding-t-tests-t-values-and-t-distributions).

###”qt” es la sintaxis que especifica un valor t determinado de la variable aleatoria de manera que la probabilidad de que esta variable sea menor o igual a este determinado valor t es igual a la probabilidad dada (que en la sintaxis de R se designa como p)

###Para más información véase https://marxianstatistics.com/2021/09/05/analisis-teorico-de-la-funcion-cuantil-en-r-studio/

###”n-1″ son los grados de libertad de la distribución t de student.

#### Error Estándar

ee = sd(ventas)/sqrt(n)

### Intervalo

mean(ventas)-t*ee

mean(ventas)+t*ee

mean(ventas)+c(-1,1)*t*ee ###c(-1,1) es un vector que se introduce artificialmente para poder construir el intervalo de confianza al 95% (u a otro nivel de confianza deseado) en una sola línea de código.

## ELABORAR UNA FUNCIÓN QUE PERMITA CONSTRUIR UN INTERVALO DE CONFIANZA AL P% DE NIVEL DE CONFIANZA PARA LA VARIABLE X

ic = function(x,p) {

  n = length(x)

  t = qt(p+((1-p)/2),n-1)

  ee = sd(x)/sqrt(n)

  mean(x)+c(-1,1)*t*ee

}

###Intervalo de 95% confianza para ventas

ic(ventas,0.95)

ic(ventas,0.99)

###El nivel de confianza hace que el intervalo de confianza sea más grande pues esto implica que los estadísticos de prueba (las versiones muestrales de los parámetros poblacionales) son más estadísticamente más robustos, por lo que su vecindario de aplicación es más amplio.

ic(ipc,0.95)

ic(menor16,0.95)

## REALIZAR LA PRUEBA DE HIPÓTESIS (PARA UNA MUESTRA) DENTRO DEL INTERVALO DE CONFIANZA GENERADO AL P% DE NIVEL DE CONFIANZA

t.test(ventas,mu=180) ###Por defecto, salvo que se cambie tal configuración, R realiza esta prueba a un nivel de confianza de 0.95.

### Realizando manualmente el cálculo anterior:

(t2=(mean(ventas)-180)/ee) ###Aquí se calcula el valor t por separado (puesto que la sintaxis “t.test” lo estima por defecto, como puede verificarse en la consola tras correr el código). Se denota con “t2” porque anteriormente se había definido en la línea de código 106 t = qt(0.975,n-1) para la construcción manual de los intervalos de confianza.

2*(1-pt(t2,20)) ###Aquí se calcula manualmente el valor p. Se multiplica por dos para tener la probabilidad acumulada total (considerando ambas colas) al valor t (t2, siendo más precisos) definido, pues esta es la definición de valor p. Esto se justifica por el hecho de la simetría geométrica de la distribución normal, la cual hace que la probabilidad acumulada (dentro de un intervalo de igual longitud) a un lado de la media sea igual a la acumulada (bajo la condición especificada antes) a la derecha de la media.

2*(pt(-t2,20)) ###Si el signo resultante de t fuese negativo. Además, 20 es debido a n-1 = 21-1 = 20.

###La sintaxis “pt” calcula el valor de la función de densidad acumulada (cdf) de la distribución t de Student dada una determinada variable aleatoria x y grados de libertad df (degrees of freedom, equivalente a gl en español), véase https://www.statology.org/working-with-the-student-t-distribution-in-r-dt-qt-pt-rt/

## CREAR UNA VARIABLE QUE PERMITA SEPARAR ESPACIALMENTE (AL INTERIOR DE LA GRÁFICA QUE LOS REPRESENTA) AQUELLOS ipc MENORES A UN VALOR h (h=117) DE AQUELLOS QUE SON IGUALES O MAYORES QUE h (h=117)

(ipc1 = 1*(ipc<17)+2*(ipc>=17))

ipc2=factor(ipc1,levels=c(1,2),labels=c(“uno”,”dos”))

plot(ipc2,ipc)

abline(h=17,col=2)

## GENERAR GRÁFICO DE DIAMENTE CON LOS INTERVALOS DE CONFIANZA AL 0.95 DE NdC CENTRADOS EN LAS MEDIAS DE CADA GRUPO CREADO ALREDEDOR DE 17 Y UN BOX-PLOT

library(gplots)

plotmeans(ventas~ipc2) ###Intervalos del 95% alrededor de la media (GRÁFICO DE DIMANTES)

boxplot(ventas~ipc2)

## REALIZAR LA PRUEBA DE HIPÓTESIS DE QUE LA MEDIA ES LA MISMA PARA LOS DOS GRUPOS GENERADOS ALREDEDOR DE h=17

(med = tapply(ventas,ipc1,mean))

(dev = tapply(ventas,ipc1,sd))

(var = tapply(ventas,ipc1,var))

(n   = table(ipc1))

dif=med[1]-med[2]

###La sintaxis “tapply” aplica una función a cada celda de una matriz irregular (una matriz es irregular si la cantidad de elementos de cada fila varía), es decir, a cada grupo (no vacío) de valores dados por una combinación única de los niveles de ciertos factores.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 1: ASUMIENDO VARIANZAS IGUALES (SUPUESTO QUE EN ESCENARIOS REALES DEBERÁ VERIFICARSE CON ANTELACIÓN)

varpond= ((n[1]-1)*var[1] + (n[2]-1)*var[2])/(n[1]+n[2]-2) ###Aquí se usa una varianza muestral ponderada como medida más precisa (dado que el tamaño de los grupos difiere) de una varianza muestral común entre los dos grupos construidos alrededor de h=17

e.e=sqrt((varpond/n[1])+(varpond/n[2]))

dif/e.e

t.test(ventas~ipc1,var.equal=T)

t.test(ventas~ipc1)  #Por defecto la sintaxis “t.test” considera las varianzas iguales, por lo que en un escenario de diferentes varianzas deberá ajustarse esto como se muestra a continuación.

### PRUEBA DE HIPÓTESIS EN ESCENARIO 2: ASUMIENDO VARIANZAS DESIGUALES (AL IGUAL QUE ANTES, ESTO DEBE VERIFICARSE)

e.e2=sqrt((var[1]/n[1])+(var[2]/n[2]))

dif/e.e2

a=((var[1]/n[1]) + (var[2]/n[2]))^2

b=(((var[1]/n[1])^2)/(n[1]-1)) +(((var[2]/n[2])^2)/(n[2]-1))

(glmod=a/b)

t.test(ventas~ipc1,var.equal=F)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al cero (porque la Ho afirma que la verdadera diferencia en las medias -i.e., su significancia estadística- es nula).

###Conceptualmente hablando, una diferencia estadísticamente significativa expresa una variación significativa en el patrón geométrico que describe al conjunto de datos. Véase https://marxianstatistics.com/2021/08/27/modelos-lineales-generalizados/. Lo que define si una determinada variación es significativa o no está condicionado por el contexto en que se realiza la investigación y la naturaleza misma del fenómeno estudiado.

## REALIZAR PRUEBA F PARA COMPARAR LA VARIANZA DE LOS GRUPOS Y LA PROBABILIDAD ASOCIADA

(razon.2 = var[1]/var[2]) ###Ratio de varianzas (asumiendo que las varianzas poblacionales son equivalentes a la unidad, en otro caso su estimación sería matemáticamente diferente; véase https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_power/bs704_power_print.html y https://stattrek.com/online-calculator/f-distribution.aspx).

pf(razon.2,n[1]-1,n[2]-1) ###Al igual que “pt” (para el caso de la t de Student que compara medias de dos grupos o muestras), “pf” en el contexto de la prueba F (que compara la varianza de dos grupos o muestras) calcula la probabilidad acumulada que existe hasta determinado valor.

###La forma general mínima (más sintética) de la sintaxis “pf” es “pf(x, df1, df2)”, en donde “x” es el vector numérico (en este caso, de un elemento), df1 son los gl del numerador y df2 son los grados de libertad del denominador de la distribución F (cuya forma matemática puede verificarse en la documentación de R; véase https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Fdist.html).

(2*pf(razon.2,n[1]-1,n[2]-1)) ###Aquí se calcula el valor p manualmente.

###Realizando de forma automatizada el procedimiento anterior:

var.test(ventas~ipc1)

detach(estudios)

###Para aceptar o rechazar la hipótesis nula el intervalo debe contener al 1 porque la Ho afirma que la varianza de ambas muestras es igual (lo que implica que su cociente o razón debe ser 1), lo que equivale a afirmar que la diferencia real entre desviaciones (la significancia estadística de esta diferencia) es nula.

## EN EL ESCENARIO DEL ANÁLISIS DE MUESTRAS PAREADAS, ANALIZAR LOS DATOS SOBRE EL EFECTO DE DOS DROGAS EN LAS HORAS DE SUEÑO DE UN GRUPO DE PACIENTES (CONTENIDOS EN EL ARCHIVO “sleep” DE R)

attach(sleep) ###”sleep” es un archivo de datos nativo de R, por ello puede “llamarse” sin especificaciones de algún tipo.

plot(extra ~ group)

plotmeans(extra ~ group,connect=F)  ###Intervalos del 95% alrededor de la media. El primer insumo (entrada) de la aplicación “plotmeans” es cualquier expresión simbólica que especifique la variable dependiente o de respuesta (continuo) y la variable independiente o de agrupación (factor). En el contexto de una función lineal, como la función “lm()” que es empleada por “plotmeans” para graficar (véase la documentación de R sobre “plotmeans”), sirve para separar la variable dependiente de la o las variables independientes, las cuales en este caso de aplicación son los factores o variables de agrupación (puesto que se está en el contexto de casos clínicos y, en este contexto, las variables independientes son las variables que sirven de criterio para determinar la forma de agrupación interna del conjunto de datos; este conjunto de datos contiene las observaciones relativas al efecto de dos drogas diferentes sobre las horas de sueño del conjunto de pacientes-).

A = sleep[sleep$group == 1,] ###El símbolo “$” sirve para acceder a una variable (columna) de la matriz de datos, en este caso la número 1 (por ello el “1”).

B = sleep[sleep$group == 2,]

plot(1:10,A$extra,type=”l”,col=”red”,ylim=c(-2,7),main=”Gráfico 1

Horas de sueño entre pacientes con el tratamiento A y B”,ylab=”Horas”,xlab=”Numero de paciente”,cex.main=0.8)

lines(B$extra,col=”blue”)

legend(1,6,legend=c(“A”,”B”),col=c(“red”,”blue”),lwd=1,box.col=”black”,cex=1)

t.test(A$extra,B$extra)

t.test(A$extra,B$extra,paired=T)

t.test(A$extra-B$extra,mu=0)

###Una variable de agrupación (también llamada variable de codificación, variable de grupo o simplemente variable) clasifica las observaciones dentro de los archivos de datos en categorías o grupos. Le dice al sistema informático (sea cual fuere) cómo el usuario ha clasificado los datos en grupos. Las variables de agrupación pueden ser categóricas, binarias o numéricas.

###Cuando se desea realizar un comando dentro del texto (en un contexto de formato Rmd) se utiliza así,por ejemplo se podría decir que la media del sueño extra es `r mean(sleep$extra)` y la cantidad de datos son `r length(sleep$extra)`

## ESTIMACIÓN DE LA POTENCIA DE UNA PRUEBA DE HIPÓTESIS (PROBABILIDAD BETA DE COMETER ERROR TIPO II)

library(pwr) ###”pwr” es una base de datos nativa de R

delta=3 ###Nivel de Resolución de la prueba. Para un valor beta (probabilidad de cometer error tipo II) establecido el nivel de resolución es la distancia mínima que se desea que la prueba sea capaz de detectar, es decir, que si existe una distancia entre los promedios tal que la prueba muy probablemente rechace la hipótesis nula Ho. Para el cálculo manual de la probabilidad beta véase el complemento de este documento (FUNDAMENTOS GENERALES DEL PROCESO DE ESTIMACIÓN Y PRUEBA DE HIPÓTESIS EN R STUDIO. PARTE I, TEORÍA ESTADÍSTICA)

s=10.2 ###Desviación estándar muestral

(d=delta/s) #Tamano del efecto.

pwr.t.test(n=NULL,d=d,power =0.9,type=”one.sample”)

## ESTIMAR CON EL VALOR ÓPTIMO PARA EL NIVEL DE RESOLUCIÓN, PARTIENDO DE n=40 Y MANTENIENDO LA POTENCIA DE 0.9

(potencia=pwr.t.test(n=40,d=NULL,power =0.9,type=”one.sample”))

potencia$d*s  #Delta

## GRAFICAR LAS DIFERENTES COMBINACIONES DE TAMAÑO DE MUESTRA Y NIVEL DE RESOLUCIÓN PARA UNA POTENCIA DE LA PRUEBA FIJA

s=10.2

deltas=seq(2,6,length=30)

n=numeric(30)

for(i in 1:30) {

  (d[i]=deltas[i]/s)

  w=pwr.t.test(n=NULL,d=d[i],power =0.9,type=”one.sample”)

  n[i]=w$n

}

plot(deltas,n,type=”l”)

## SUPÓNGASE QUE SE QUIERE PROBAR SI DOS GRUPOS PRESENTAN DIFERENCIAS ESTADÍSTICAMENTE SIGNIFICATIVAS EN LOS NIVELES PROMEDIO DE AMILASA, PARA LO CUAL SE CONSIDERA IMPORTANTE DETECTAR DIFERENCIAS DE 15 UNIDADES/ML O MÁS ENTRE LOS PROMEDIOS

s2p=290.9  ###Varianza ponderada de los dos grupos

(sp=sqrt(s2p)) ###Desviación estándar ponderada de los dos grupos

delta=15

(d=delta/sp)

pwr.t.test(n=NULL,d=d,power =0.9,type=”two.sample”)

GENERALIDADES SOBRE LA TEORÍA ESTADÍSTICA DE ENCUESTAS POR MUESTREO

ISADORE NABI

ENCUESTA NACIONAL SOBRE LOS ASPECTOS DE LA VIRTUALIDAD VINCULADOS CON LA PANDEMIA DEL COVID-19 (ENAVIRPA 2021)

ISADORE NABI

VII. REFERENCIAS

Aldrich, J. H., & Nelson, F. D. (1984). Linear Probability, Logit, and Probit Models. Beverly Hills: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Allen, M. (2017). The SAGE Encyclopedia of COMMUNICATION RESEARCH METHODS. London: SAGE Publications, Inc.

AMERICAN PSYCHOLOGICAL ASSOCIATION. (2021, Julio 15). level. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/level

AMERICAN PYSCHOLOGICAL ASSOCIATION. (2021, Julio 15). factor. Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/factor

AMERICAN PYSCHOLOGY ASSOCIATION. (2021, Julio 15). logistic regression (LR). Retrieved from APA Dictionary of Pyschology: https://dictionary.apa.org/logistic-regression

Barrios, J. (2019, Julio 19). La matriz de confusión y sus métricas . Retrieved from Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Bhuptani, R. (2020, Julio 13). Quora. Retrieved from What is the difference between linear regression and least squares?: https://www.quora.com/What-is-the-difference-between-linear-regression-and-least-squares

Birnbaum, Z. W., & Sirken, M. G. (1950, Marzo). Bias Due to Non-Availability in Sampling Surveys. Journal of the American Statistical Association, 45(249), 98-111.

Burrus, C. S. (2021, Julio 7). Iterative Reweighted Least Squares. Retrieved from https://cnx.org/exports/[email protected]/iterative-reweighted-least-squares-12.pdf

Centro Centroamericano de Población. (2021, Abril 28). Variables y escalas de medición. Retrieved from Universidad de Costa Rica: https://ccp.ucr.ac.cr/cursos/epidistancia/contenido/2_escmed.html

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Departamento Administrativo Nacional de Estadística. (2003). Metodología de Diseño Muestral. Bogotá: Dirección Sistema Nacional de Información Estadística. Retrieved from https://www.dane.gov.co/files/EDI/anexos_generales/Metodologia_diseno_muestral_anexo1.pdf?phpMyAdmin=a9ticq8rv198vhk5e8cck52r11

Díaz-Narváez, V. P. (2017). Regresión logística y decisiones clínicas. Nutrición Hospitalaria, 34(6), 1505-1505. Retrieved from https://scielo.isciii.es/pdf/nh/v34n6/36_diaz.pdf

Google Developers. (2021, Julio 19). Clasificación: Exactitud. Retrieved from https://developers.google.com/machine-learning/crash-course/classification/accuracy

Greene, W. (2012). Econometric Analysis (Séptima ed.). Harlow, Essex, England: Pearson Education Limited.

Gujarati, D., & Porter, D. (2010, Julio 8). Econometría (Quinta ed.). México, D.F.: McGrawHill Educación. Retrieved from Homocedasticidad.

Haskett, D. R. (2014, Octubre 10). “Mitochondrial DNA and Human Evolution” (1987), by “Mitochondrial DNA and Human Evolution” (1987), by Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson. Retrieved from The Embryo Project Encyclopedia: https://embryo.asu.edu/pages/mitochondrial-dna-and-human-evolution-1987-rebecca-louise-cann-mark-stoneking-and-allan

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

Instituto dei Sistemi Complessi. (2021, Febrero 27). Topolical vs Metric Distance. Retrieved from Biological Systems: https://www.isc.cnr.it/research/topics/physical-biology/biological-systems/topological-vs-metric-distance/

Instituto Nacional de Estadística y Censos de Costa Rica. (2016, Julio). Manual de Clasificación Geográfica con Fines Estadísticos de Costa Rica. Retrieved from Biblioteca Virtual: https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/meinstitucionalmcgfecr.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Retrieved from https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2021, 7 14). Factor de Expansión. Retrieved from INEC: https://www.inec.cr/sites/default/files/_book/F.html

Instituto Nacional de Estadística y Censos de la República Argentina. (2019). Encuesta de Actividades de Niños, Niñas y Adolescentes 2016-2017. Factores de expansión, estimación y cálculo de los errores por muestra para el dominio rural. Buenos Aires: Ministerio de Hacienda. Retrieved from https://www.indec.gob.ar/ftp/cuadros/menusuperior/eanna/anexo_bases_eanna_rural.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

Jose, K. (2020, Junio 27). Graph Theory | Isomorphic Trees. Retrieved from Towards Data Science: https://towardsdatascience.com/graph-theory-isomorphic-trees-7d48aa577e46

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Retrieved from https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Kolmogórov, A. N., & Fomin, S. V. (1978). Elementos de la Teoría de Funciones y del Análisis Funcional (Tercera ed.). (q. e.-m. Traducido del ruso por Carlos Vega, Trans.) Moscú: MIR.

Liao, T. F. (1994). INTERPRETING PROBABILITY MODELS. Logit, Probit, and Other Generalized Linear Models. Iowa: Sage University Papers Series. Quantitative Applications in the Social Sciences.

Lipschutz, S. (1992). Álgebra Lineal. Madrid: McGraw-Hill.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

Lohr, S. L. (2019). Sampling: Design and Analysis (Segunda ed.). Boca Raton: CRC Press.

McCullagah, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models (Segunda ed.). London: Chapman and Hall.

Nelder, J. A., & Wedderburn, R. W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, 135(3), 370-384.

Online Stat Book. (2021, Julio 15). Levels of an Independent Variable. Retrieved from Independent and dependent variables: https://onlinestatbook.com/2/introduction/variables.html

Patil, G. P., & Shorrock, R. (1965). On Certain Properties of the Exponential-type Families. Journal of the Royal Statistical, 27(1), 94-99.

Perry, J. (2014, Abril 2). NORM TO/FROM METRIC. Retrieved from The University of Southern Mississippi: https://www.math.usm.edu/perry/old_classes/mat681sp14/norm_and_metric.pdf

Ritchey, F. (2002). ESTADÍSTICA PARA LAS CIENCIAS SOCIALES. El potencial de la imaginación estadística. México, D.F.: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.

Samuels, S. (2014, 11 19). Can I get to an approximation of the population with knowledge of the expansion factor? Retrieved from Cross Validated. StackExchange: https://stats.stackexchange.com/questions/124750/can-i-get-to-an-approximation-of-the-population-with-knowledge-of-the-expansion

StackExchange Cross Validated. (2017, Febrero 2). “Least Squares” and “Linear Regression”, are they synonyms? Retrieved from What is the difference between least squares and linear regression? Is it the same thing?: https://stats.stackexchange.com/questions/259525/least-squares-and-linear-regression-are-they-synonyms

StackExchange Data Science. (2016, Junio 19). Is GLM a statistical or machine learning model? Retrieved from https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (2014, Marzo 15). Supervised Learning, Unsupervised Learning, Regression. Retrieved from https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

TalkStats. (2011, Noviembre 29). SPSS. Retrieved from Forums: http://www.talkstats.com/threads/what-is-the-difference-between-a-factor-and-a-covariate-for-multinomial-logistic-reg.21864/

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Retrieved from https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

van den Berg, R. G. (2021, Julio 15). Measurement Levels – What and Why? Retrieved from SPSS Tutorials: https://www.spss-tutorials.com/measurement-levels/

Weisstein, E. W. (2021, Julio 15). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 21). Sigmoid Function. Retrieved from MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SigmoidFunction.html

Weisstein, E. W. (2021, Mayo 18). Smooth Function. Retrieved from Wolfram MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/SmoothFunction.html

Wikimedia. (2021, Abril 6). Commons. Retrieved from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg

Wikipedia. (2021, Julio 6). Graph isomorphism. Retrieved from Morphism: https://en.wikipedia.org/wiki/Graph_isomorphism

Wikipedia. (2021, Mayo 21). Iterative proportional fitting. Retrieved from Statistical algorithms: https://en.wikipedia.org/wiki/Iterative_proportional_fitting

Wikipedia. (2021, Febrero 25). Iteratively reweighted least squares. Retrieved from Least squares: https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares

Wikipedia. (2021, Julio 13). Logistic function. Retrieved from Growth curves: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Mayo 22). Logistic regression. Retrieved from Regression models: https://en.wikipedia.org/wiki/Logistic_regression

Wikipedia. (2021, Junio 14). Logit. Retrieved from Special functions: https://en.wikipedia.org/wiki/Logistic_function

Wikipedia. (2021, Julio 8). Lp space. Retrieved from Measure theory: https://www.wikiwand.com/en/Lp_space

Wikipedia. (2021, Abril 15). Odds. Retrieved from Wagering: https://en.wikipedia.org/wiki/Odds

Wikipedia. (2021, Julio 10). Precision and recall. Retrieved from Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

Wooldridge, J. (2010). Econometric Analysis of Cross Section and Panel Data (Segunda ed.). Cambridge, Massachusetts: MIT Press.

GENERALIDADES DE LA TEORÍA DEL APRENDIZAJE ESTADÍSTICO

ISADORE NABI

VI. Referencias

Barrios, J. (19 de Julio de 2019). La matriz de confusión y sus métricas . Obtenido de Health BIG DATA: https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Google Developers. (19 de Julio de 2021). Clasificación: Exactitud. Obtenido de https://developers.google.com/machine-learning/crash-course/classification/accuracy

Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning. Data Mining, Inference, and Prediction (Segunda ed.). New York: Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer.

StackExchange Data Science. (19 de Junio de 2016). Is GLM a statistical or machine learning model? Obtenido de https://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-learning-model

StackOverFlow. (15 de Marzo de 2014). Supervised Learning, Unsupervised Learning, Regression. Obtenido de https://stackoverflow.com/questions/22419136/supervised-learning-unsupervised-learning-regression

Wikipedia. (10 de Julio de 2021). Precision and recall. Obtenido de Bioinformatics: https://en.wikipedia.org/wiki/Precision_and_recall

SOBRE LOS ISOMORFISMO DE GRAFO

ISADORE NABI

En teoría de grafos, se define como grafo al par G=(V,E), en donde V es el conjunto de aquellos elementos que son vértices y E es el conjunto de pares de vértices cuyos elementos se denominan aristas. A continuación, se presenta un ejemplo simple de grafo con tres vértices (círculos azules) y tres aristas (líneas rectas negras), específicamente un triángulo rectángulo visto como grafo.

Fuente: (Wikimedia, 2021).

Un isomorfismo entre dos grafos G1 y G2 es una relación funcional biyectiva (i.e., que establece una relación uno-a-uno entre los elementos de dos conjuntos) entre los vértices de G1 y G2, que adopta la forma f: V(G1)–>V(G2), en la que cualesquiera dos vértices u, v ∈ G1 son adyacentes (relación entre dos vértices en la que ambos son extremos de la misma arista) si y solo si sus reflejos o imágenes matemáticas f(u) y f(v) son adyacentes en G2. La característica fundamental de un isomorfismo de grafo es que es una relación funcional biyectiva que preserva las aristas que caracterizan al grafo. Que esta transformación matemática preserve las aristas implica que las distancias entre los vértices, analizados estos “de dos en dos”, no cambian.

Son precisamente estas distancias a las que se les conoce como distancias relativas dentro de la estructura matemática, en contraste con las distancias absolutas que son medidas como distancias de los vértices considerados individualmente. Un ejemplo de ello se muestra a continuación.

Fuente: (Jose, 2020).

Los dos grafos anteriores son isomórficos entre sí, i.e., poseen la misma estructura interna o estructura topológica. A continuación, se presenta un ejemplo numérico de ello, en consonancia con lo anteriormente expuesto.

Fuente: (Wikipedia, 2021).

Las diferencias concretas entre las distancias topológicas y las distancias métricas pueden observarse con nitidez en lo relativo al desarrollo teórico y aplicado de modelos que explican el comportamiento colectivo de animales, como lo son bandadas de aves, bancos de peces, etc. Esto es un equivalente concreto a nivel biológico del concepto matemático abstracto de la manera en que se agrupan en subconjuntos los elementos de un determinado conjunto).

Como señala el Instituto de Sistemas Complejos de Italia (Instituto dei Sistemi Complessi, 2021), todos los modelos existentes sobre el comportamiento colectivo de los animales asumen que la interacción entre los diferentes individuos depende de la distancia métrica, al igual que en la Física. Esto implica, por ejemplo, que dos pájaros separados por 5 metros interactúan con más fuerza que dos pájaros separados por 10 metros. Como se señala en la fuente citada, los modelos desarrollados por biólogos se basan en un esquema de “zonas de comportamiento”, donde cada zona está asociada a uno de los tres componentes básicos de todos los modelos: repulsión de corto alcance, alineación, atracción de largo alcance. Los modelos desarrollados por físicos, por otro lado, usaban principalmente una función de fuerza única. Sin embargo, los dos enfoques son sustancialmente equivalentes y lo que importa es que ambos se basan en un paradigma métrico.

El punto crucial es que, dentro del paradigma métrico, el número de vecinos con los que interactúa cada individuo no es una constante, sino que depende de la densidad. Por ejemplo, supóngase que cada ave interactúa con todos los vecinos dentro de un rango de 5 metros. El número de vecinos dentro de los 5 metros será grande en una bandada densa y pequeña en una bandada escasa. Entonces, dentro del paradigma métrico, el número de vecinos que interactúan no es una constante, sino que depende de la densidad. Lo que es constante es el rango métrico de la interacción (5 metros en el ejemplo anterior).

El paradigma métrico parece muy razonable a primera vista. Los animales son buenos para evaluar distancias, por lo que tiene sentido asumir que la fuerza de sus lazos mutuos depende de la distancia. Además, los modelos métricos demostraron ser capaces de reproducir cualitativamente el comportamiento de las bandadas. Por lo tanto, no había razón para cuestionar el paradigma métrico, en ausencia de datos empíricos. Y dado que hasta el momento no se disponía de datos empíricos, todos los modelos utilizaron una interacción métrica.

Los primeros datos empíricos sobre grandes bandadas de estorninos fueron obtenidos por el nodo INFM-CNR dentro del proyecto STARFLAG (esto hace referencia a un proyecto sobre comportamiento colectivo de animales coordinado por el INFM-CNR, organismo que pertenece a la institución citada). Al reconstruir las posiciones en 3D de aves individuales, fue posible mapear la distribución promedio de los vecinos más cercanos (Figura 2), lo que proporciona la caracterización más clara de la estructura de las aves dentro de una bandada.

Así, “Dado un ave de referencia, medimos la orientación angular de su vecino más cercano con respecto a la dirección de movimiento de la bandada, es decir, el rumbo y la elevación del vecino. Repetimos esto tomando a todos los individuos dentro de una bandada como ave de referencia, y de esta manera mapeamos la posición espacial promedio de los vecinos más cercanos.” (Instituto dei Sistemi Complessi, 2021). El fragmento de la cita bibliográfica anterior en negrita y cursiva es en esencia la lógica de tomar a los individuos “de dos en dos”, añadiendo a ello elementos que juegan un rol relevante en este contexto específico de aplicación de las nociones topológicas, como lo son el rumbo y la elevación; sin embargo, hay que decir que a nivel de teoría de grafos, también existen grafos cuyas aristas poseen dirección, los cuales por motivo de simplicidad no fueron expuestos, aunque no por ello deja de ser necesaria esta especificación.

Así, es posible pensar en este mapa como un mapa de la esfera alrededor de cada ave voladora. El centro del mapa es la dirección de avance, los polos son las direcciones hacia arriba y hacia abajo. El color en un punto dado del mapa indica la probabilidad de que el vecino más cercano del pájaro esté en esa dirección particular. Este mapa muestra una sorprendente falta de vecinos más cercanos a lo largo de la dirección del movimiento. Por tanto, la estructura de los individuos es fuertemente anisotrópica[1]. Esta anisotropía probablemente esté relacionada con el aparato visual de las aves. Sin embargo, el punto crucial es que esta anisotropía es el efecto de la interacción entre individuos, cualquiera que sea esta interacción.

Fuente: (Instituto dei Sistemi Complessi, 2021).

Para respaldar esta afirmación, calculamos la distribución de vecinos muy alejados del ave de referencia, por ejemplo, para el décimo vecino más cercano (mapa inferior en la figura).

Fuente: (Instituto dei Sistemi Complessi, 2021).

Esta distribución es uniforme, para garantizar una agregación de puntos completamente isótropa[2] y sin interacción, puesto que ello es una indicación empírica directa de afirmar que la interacción decae con la distancia: cuanto más separadas están dos aves, menor es su grado de correlación. Este resultado también demuestra que podemos usar la anisotropía para obtener información sobre la interacción. De hecho, se puede calcular el mapa de distribución angular[3] de los vecinos incluso para el segundo, tercer, cuarto vecino más cercano, etc., y observar cómo la estructura anisotrópica presente para los vecinos más cercanos se desvanece progresivamente a medida que aumenta el orden del vecino.

La desintegración de esta estructura anisotrópica con la distancia se puede cuantificar de forma precisa calculando el factor de anisotropía gamma[4].  Esta cantidad decae a su valor isotrópico (no interactivo) 1/3 a medida que aumenta el orden n-ésimo del vecino, de manera similar a una función de correlación estándar.

“Sin embargo, el punto crucial es que n es una distancia topológica, es decir, es una distancia medida en unidades de aves, en lugar de metros. A partir del factor de anisotropía podemos calcular el rango topológico, definido como el punto donde el factor de anisotropía se vuelve igual a su valor de no interacción. Este rango topológico es simplemente el número promedio de vecinos con los que interactúa cada ave. Claramente, dada la densidad de la bandada, también podemos definir una distancia métrica estándar y, por lo tanto, un rango métrico de la interacción. El rango métrico de interacción no es más que la distancia máxima de las aves dentro del rango topológico.” Fuente: (Instituto dei Sistemi Complessi, 2021).

Así, el punto importante es que la densidad de las bandadas varía mucho de una bandada a otra, y esto implica que el rango topológico y métrico no puede ser constante cuando la densidad varía. Para dilucidar este punto crucial, considérese dos bandadas con diferentes densidades. Si la interacción depende de la distancia métrica, entonces el rango en metros es el mismo en las dos bandadas, mientras que el número de individuos dentro de este rango es grande en la bandada más densa y pequeño en la más dispersa.

Fuente: (Instituto dei Sistemi Complessi, 2021).

Por el contrario, si la interacción depende de la distancia topológica, el rango en unidades de aves es constante en las dos bandadas, mientras que la distancia de estos n vecinos más cercanos es pequeña en la bandada más densa y grande en la más escasa.

La diferencia entre la hipótesis topológica y métrica es clara: en el escenario topológico, el número de individuos que interactúan es fijo. Por el contrario, en el escenario métrico, dicho número varía con la densidad; por ejemplo, dentro del mismo rango métrico puede haber 10 aves en una bandada muy densa y solo 1 ave en una muy escasa. Por lo tanto, los rangos topológicos y métricos no son caracterizaciones intercambiables de la interacción.

Por lo tanto, para comprender si lo que importa es la métrica o la distancia topológica, debemos medir cómo el rango métrico y topológico depende de la densidad de las bandadas. En promedio, para este caso de aplicación concreto se sostiene en la fuente citada que el rango topológico es igual a 6.5 aves. “Este resultado contrasta con la mayoría de los modelos y teorías de comportamiento animal colectivo actualmente en el mercado, que asumen un rango métrico de interacción.” Fuente: (Instituto dei Sistemi Complessi, 2021).

¿Por qué una interacción topológica y no métrica? El comportamiento colectivo de los animales se escenifica en un entorno natural convulso. Por tanto, el mecanismo de interacción formado por la evolución debe mantener la cohesión frente a fuertes perturbaciones, de las cuales la depredación es la más relevante. Creemos que la interacción topológica es el único mecanismo que otorga una cohesión tan robusta y, por lo tanto, una mayor aptitud biológica. Una interacción métrica es inadecuada para hacer frente a este problema: siempre que la distancia interindividual se hiciera mayor que el rango métrico, la interacción desaparecería, la cohesión se perdería y los rezagados se “evaporarían” de la agregación. Una interacción topológica, por el contrario, es muy robusta, ya que su fuerza es la misma a diferentes densidades. Al interactuar dentro de un número fijo de individuos, en lugar de metros, la agregación puede ser densa o escasa, cambiar de forma, fluctuar e incluso dividirse, pero manteniendo el mismo grado de cohesión. Por lo tanto, la interacción topológica es funcional para mantener la cohesión frente a las fuertes perturbaciones a las que está sujeta una bandada, típicamente depredación. Así, las distancias topológicas son aquellas distancias entre los elementos de un conjunto, o entre los componentes integrantes de un sistema dinámico, que se mantienen invariantes ante perturbaciones. Por ello, en línea con lo planteado en (Nabi, 2021) en el terreno de la biología molecular, las distancias topológicas denotan las propiedades características, i.e., la esencia, de los fenómenos naturales Lo que es más íntimo, más característico del comportamiento estudiado.

Finalmente, es necesario mencionar que existe evidencia de que el valor particular del rango topológico que encontramos (6.5) está relacionado con las capacidades cognitivas de las aves y, en particular, con sus habilidades pre numéricas[5].

REFERENCIAS

Instituto dei Sistemi Complessi. (27 de Febrero de 2021). Topolical vs Metric Distance. Obtenido de Biological Systems: https://www.isc.cnr.it/research/topics/physical-biology/biological-systems/topological-vs-metric-distance/

Jose, K. (27 de Junio de 2020). Graph Theory | Isomorphic Trees. Obtenido de Towards Data Science: https://towardsdatascience.com/graph-theory-isomorphic-trees-7d48aa577e46

Nabi, I. (14 de Marzo de 2021). HACIA UNA INTERPRETACIÓN DIALÉCTICA-MATERIALISTA DE LA TOPOLOGÍA GENERAL: GÉNESIS HISTÓRICA-TEÓRICA DE LA TOPOLOGÍA DESDE LA GEOMETRÍA Y LA TEORÍA DE CONJUNTOS. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/14/hacia-una-interpretacion-dialectica-materialista-de-la-topologia-general-genesis-historica-teorica-de-la-topologia-desde-la-geometria-y-la-teoria-de-conjuntos/

Oilfield Glossary en Español. (2021). gamma (γ). Obtenido de Geofísica: https://glossary.oilfield.slb.com/es/terms/g/gamma

The SEG Wiki. (8 de Abril de 2021). Isotropía Transversal. Obtenido de Dictionary: https://wiki.seg.org/wiki/Dictionary:Transverse_isotropy/es

Wikimedia. (6 de Abril de 2021). Commons. Obtenido de Wikipedia: https://upload.wikimedia.org/wikipedia/commons/b/bf/Undirected.svg

Wikipedia. (6 de Julio de 2021). Graph isomorphism. Obtenido de Morphism: https://en.wikipedia.org/wiki/Graph_isomorphism


[1] La anisotropía es la propiedad general de la materia según la cual cualidades como elasticidad, temperatura, conductividad, velocidad de propagación de la luz, etc., varían según la dirección en que son examinadas.​ Un ente anisótropo puede presentar diferentes características según la dirección.

[2] La isotropía es la característica de algunos fenómenos en el espacio cuyas propiedades no dependen de la dirección en que son examinadas.

[3] La distribución angular de un conjunto de observaciones es la distribución de las direcciones hacia donde los electrones son emitidos dentro de un determinado sistema de coordenadas.

[4] Como se señala en (Oilfield Glossary en Español, 2021), el factor de anisotropía gamma es el parámetro de las ondas S para un medio en el cual las propiedades elásticas exhiben isotropía transversal vertical [implica propiedades elásticas que son las mismas en cualquier dirección perpendicular a un eje de simetría y tiene cinco constantes elásticas independientes, como se señala en (The SEG Wiki, 2021)]. Gamma (γ) es el parámetro de anisotropía de las ondas S y equivale a mitad de la razón de la diferencia entre las velocidades de las ondas SH que se propagan en sentido horizontal y vertical, al cuadrado, dividida por la velocidad de las ondas SH que se propagan verticalmente al cuadrado; una onda SH es una onda de corte polarizada horizontalmente.”

[5] Para el caso de los humanos, las habilidades pre numéricas son aquellas necesarias antes de aprender sobre los números, tales como comparar, clasificar, identificar, reunir, establecer relaciones uno a uno, seriar, etc.

ANÁLISIS DE LA METODOLOGÍA APLICADA POR LOS INSTITUTOS NACIONALES DE ESTADÍSTICA Y CENSOS EN LA CLASIFICACIÓN CUALITATIVA DEL NIVEL DE INGRESO

ISADORE NABI

REFERENCIAS

Aldridge, H. (2017). How do we measure? Toronto: Maytree.

Arias Chavarría, E. (2019). ESTADO, NEOLIBERALISMO Y EMPRESARIOS EN COSTA RICA:LA COYUNTURA DEL TLC. Revista de Ciencias Sociales de la Universidad de Costa Rica, 69-86. Obtenido de https://www.redalyc.org/jatsRepo/153/15360186004/html/index.html

Arias Ramírez, R. (2020). Pobreza y desigualdad en Costa Rica: una mirada más allá de la distribución de los ingresos. Estudios del Desarrollo Social: Cuba y América Latina, 1-26. Obtenido de http://scielo.sld.cu/pdf/reds/v8n1/2308-0132-reds-8-01-16.pdf

autocosts. (6 de Mayo de 2019). Coding rules. Obtenido de GitHub: https://github.com/jfoclpf/autocosts/blob/master/contributing.md

autocosts. (2 de Noviembre de 2020). Core. Obtenido de https://github.com/jfoclpf/autocosts/tree/master/src/client/core

autocosts. (27 de Abril de 2021). Costos de Automóviles de Costa Rica. Obtenido de GitHub: https://autocostos.info/cr/stats

Barría, C. (16 de Mayo de 2019). Cómo Costa Rica se convirtió en uno de los países más innovadores de América Latina (y cuáles son algunos de los inventos más sorprendentes). Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-48193736

Baumol, W. (1983). Marx and the Iron Law of Wages. The American Economic Review, 303-308.

Blanchard, O., & Leigh, D. (2013). Growth Forecast Errors and Fiscal Multipliers. Washington: International Monetary Fund. Obtenido de https://www.imf.org/external/pubs/ft/wp/2013/wp1301.pdf

Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (Novena ed.). Boston: Cengage Learning.

Case, K., Fair, R., & Oster, S. (2012). Principles of Economics (Décima ed.). Boston: Pearson Education.

Cisneros, M. F. (29 de Mayo de 2016). ¿Carro nuevo o usado? Esto es lo que le ofrecen las entidades financieras? Obtenido de FINANZAS: https://www.elfinancierocr.com/finanzas/carro-nuevo-o-usado-esto-es-lo-que-le-ofrecen-las-entidades-financieras/FFPKCXEYYBB4BGAQ7GFRK3GNUU/story/

Cisneros, M. F. (21 de Febrero de 2020). ¿Quiere comprar una casa? Deberá pagar al menos ¢7.000 por cada millón que le financien. Obtenido de El Financiero: https://www.elfinancierocr.com/finanzas/quiere-comprar-una-casa-debera-pagar-al-menos/7EXHTMCZ2RESBERYYQW4JQZYCQ/story/

Cochran, W. G. (1991). Técnicas de Muestreo. México, D.F.: Compañía Editorial Continental.

Delgado Jiménez, F. (2013). EL EMPLEO INFORMAL EN COSTA RICA: CARACTERÍSTICAS DE LOS OCUPADOS Y SUS PUESTOS DE TRABAJO. Ciencias Económicas, XXXI(2), 35-51.

Díaz Arias, D. (2019). Historia del neoliberalismo en Costa Rica. Avances de Investigación CIHAC, 1-45. Obtenido de https://cihac.fcs.ucr.ac.cr/wp-content/uploads/2019/08/David-Diaz-Historia-del-Neoliberalismo-CIHAC.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Encyclopaedia Britannica. (27 de Abril de 2021). Iron Law of Wages. Obtenido de Economics: https://www.britannica.com/topic/Iron-Law-of-Wages

Expatistan. (27 de Abril de 2021). ¿Cómo funcionan el índice y las comparaciones? Obtenido de https://www.expatistan.com/es/como-funciona

Expatistan. (Abril de 2021). Costo de vida en San Jose, Costa Rica, Costa Rica. Obtenido de https://www.expatistan.com/es/costo-de-vida/san-jose-costa-rica

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Foro Económico Mundial. (12 de Abril de 2019). 50 years of US wages, in one chart. Obtenido de https://www.weforum.org/agenda/2019/04/50-years-of-us-wages-in-one-chart/

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación Promotora de Vivienda. (28 de Abril de 2021). Informe Nacional. Situación de Vivienda y Desarrollo Urbano 2016. Obtenido de https://www.fuprovi.org/wp-content/uploads/2018/02/situacion-del-sector-vivienda-y-desarrollo-urbano-costa-rica-2016.pdf

Hidalgo Víquez, C., Andrade Pérez, L., Rodríguez Gonzáles, S., Dumani Echandi, M., Alvarado Molina, N., Cerdas Nuñez, M., & Quirós Blanco, G. (2020). Análisis de la canasta básica alimentaria de Costa Rica: oportunidades desde la alimentación y nutrición. Población y Salud en Mesoamérica, 1-24. Obtenido de https://revistas.ucr.ac.cr/index.php/psm/article/view/40822/42616

i-base. (27 de Abril de 2021). Diet: a balanced diet and your health. Obtenido de GUIDES: https://i-base.info/guides/side/diet-a-balanced-diet-and-your-health

Instituto Nacional de Estadística y Censos de Costa Rica. (2010). Actualización metodológica para la medición del empleo y la pobreza. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documentos/pobreza_y_presupuesto_de_hogares/pobreza/metodologias/documentos_metodologicos/mepobrezaenaho2010-02.pdf

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre gastos de los hogares. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-gasto.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2019). ENIGH. 2018. Cuadros sobre ingresos de los hogares. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenigh2018-ingreso.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Coeficiente de Gini por hogar y per cápita, julio 2010 – 2020. San José: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/repobrezaenaho2010-2020-01_gini.xlsx

Instituto Nacional de Estadística y Censos de Costa Rica. (2020). ENAHO. 2020. Nivel de pobreza por LP según características de los hogares y las personas, julio 2019 y julio 2020. SAN JOSÉ: INEC. Obtenido de https://www.inec.cr/sites/default/files/documetos-biblioteca-virtual/reenaho2020-linea_de_pobreza.xlsx

Jaccard, N. (29 de Septiembre de 2013). ¿Cómo es ser pobre en Suiza? Obtenido de Revista Semana: https://www.semana.com/mundo/articulo/suiza-ser-probre/359491-3/

Kleiber, C. (2007). The Lorenz curve in economics and econometrics. University of Basel. Basel: Center of Business and Economics. Obtenido de https://www.econstor.eu/bitstream/10419/123375/1/wp2007-09.pdf

Köhler, T. (2016). Income and Wealth Poverty in Germany. SOEP papers on Multidisciplinary Panel Data Research, 1-48. Obtenido de https://www.diw.de/documents/publikationen/73/diw_01.c.540534.de/diw_sp0857.pdf

Laplante, P. A. (2001). DICTIONARY OF COMPUTER SCIENCE, ENGENEERING AND TECHNOLOGY. Boca Ratón, Florida, Estados Unidos: CRC Press.

Levins, R. (Diciembre de 1993). A Response to Orzack and Sober: Formal Analysis and the Fluidity of Science. The Quarterly Review of Biology, 68(4), 547-55.

Madrigal, L. M. (5 de Diciembre de 2018). Hacienda revela identidad de grandes empresas que reportan cero ganancias reiteradamente. Obtenido de DELFINO: https://delfino.cr/2018/12/hacienda-revela-identidad-de-grandes-empresas-que-reportan-cero-ganancias-reiteradamente

Messina, J., & Silva, J. (2019). Twenty Years of Wage Inequality in Latin America. Washington: Inter-American Development Bank.

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Online Currency Converter. (27 de Abril de 2021). Swiss franc (CHF) and United States dollar (USD) Year 2013 Exchange Rate History. Source: CBR. Obtenido de https://freecurrencyrates.com/en/exchange-rate-history/CHF-USD/2013/cbr

preciosmundi. (Abril de 2021). Precios de ropa y calzado en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-ropa-calzado

preciosmundi. (Abril de 2021). Precios de transportes y servicios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-transporte-servicios

preciosmundi. (Abril de 2021). Precios de vivienda y salarios en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precio-vivienda-salarios

preciosmundi. (Abril de 2021). Precios en supermercados en Costa Rica. Obtenido de https://preciosmundi.com/costa-rica/precios-supermercado

PROGRAMA ESTADO DE LA NACIÓN. (2018). ESTADO DE LA NACIÓN EN DESARROLLO HUMANO SOSTENIBLE. Pavas: Consejo Nacional de Rectores de Costa Rica (CONARE). Obtenido de http://www.asamblea.go.cr/sd/Documents/analisis/Inforne%20Estado%20de%20%20La%20Naci%C3%B3n%202018.pdf

Quirós, M. (17 de Junio de 2017). La vivienda en alquiler: la realidad y los retos. Obtenido de El Financiero: https://www.elfinancierocr.com/opinion/la-vivienda-en-alquiler-la-realidad-y-los-retos/LJCFGLYCXNHL3H2VWGGCK5K4UI/story/

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Salazar Álvarez, G. (7 de Noviembre de 2018). Inflación y costo de vida en la Costa Rica actual. Obtenido de elmundo.cr: https://www.elmundo.cr/economia-y-negocios/inflacion-y-costo-de-vida-en-la-costa-rica-actual/

Seixo, N. (28 de Abril de 2021). ransiciones de la Edad Media a la Edad ModernaRecensión de El debate Brenner. Estructura de clases agraria y desarrollo económico en la Europa preindustrial. Obtenido de http://www.uned-historia.es/sites/default/files/Apuntes/Nacho%20Seixo%20-%20Transiciones%20de%20la%20Edad%20Media%20a%20la%20Edad%20Moderna.pdf

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. (2017). Guide on Poverty Measure. New York and Geneva: UNITED NATIONS. Obtenido de https://ec.europa.eu/eurostat/ramon/statmanuals/files/UNECE_Guide_on_Poverty_Measurement.pdf

Vargas Solís, L. P. (2016). El Proyecto Histórico Neoliberal en Costa Rica (1984-2015): Devenir histórico y crisis. Revista Rupturas, 147-162. doi:https://doi.org/10.22458/rr.v1i1.1167

Ventas, L. (5 de Febrero de 2018). ¿Es Costa Rica realmente tan “pura vida”? Las heridas ocultas tras la fachada de país próspero y estable. Obtenido de BBC Mundo: https://www.bbc.com/mundo/noticias-america-latina-42879401

Weisstein, E. (22 de Abril de 2021). Lorenz Curve. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/LorenzCurve.html

Wikipedia. (10 de Abril de 2021). Gini coefficient. Obtenido de Income inequality metrics: https://en.wikipedia.org/wiki/Gini_coefficient

Wikipedia. (27 de Febrero de 2021). Lorenz curve. Obtenido de Economic curves: https://en.wikipedia.org/wiki/Lorenz_curve

World Health Organization. (29 de Abril de 2020). Salt reduction. Obtenido de Fact sheets: https://www.who.int/news-room/fact-sheets/detail/salt-reduction

LECCIONES DE GNOSEOLOGÍA MARXIANA I (LESSONS ON MARXIAN GNOSEOLOGY I)

isaDORE NABI

xiii. REFERENCIAS (references)

Bayes, T. (23 de Diciembre de 1763). An Essay towards solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London, 370-418.

Bernoulli, J. (2006). The Art of Conjecturing (Together to a Friend on Sets in Court Tennis). Maryland: John Hopkins University Press.

Crupi, V. (28 de Enero de 2020). Confirmation. Obtenido de Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/entries/confirmation/

DeGroot, M., & Schervish, M. (2012). Probability and Statistics. Boston: Pearson Education.

Dussel, E. (1991). 2. El método dialéctico de lo abstracto a lo concreto (20, 41-33, 14; 21,3-31,38) :(Cuaderno M. desde la página 14 del manuscrito, terminado a mediados deseptiembre de 1857). En E. Dussel, La producción teórica de Marx: un comentario a los grundrisse (págs. 48-63). México D.F.: Siglo XXI Editores. Obtenido de http://biblioteca.clacso.edu.ar/clacso/otros/20120424094653/3cap2.pdf

Efron, B. (1978). Controversies in the Foundations of Statistics. The American Mathematical Monthly, 231-246.

Eremenko, A. (30 de Abril de 2020). Stack Exchange, History of Sciences and Mathematics. Obtenido de What was Kolmogorov’s point of view in the philosophy of mathematics?: https://hsm.stackexchange.com/questions/11730/what-was-kolmogorov-s-point-of-view-in-the-philosophy-of-mathematics

Feller, W. (1968). An Introduction to Probability Theory and Its Applications (Tercera ed., Vol. I). New York: John Wiley & Sons, Inc.

Filosofía en español. (9 de Febrero de 2018). Diccionario filosófico abreviado. Obtenido de URSS: http://www.filosofia.org/urss/dfa1959.htm

Fröhlich, N. (2012). Labour values, prices of production and the missing equalisation tendency of profit rates: evidence from the German economy. Cambridge Journal of Economics, 37(5), 1107-1126.

Frolov, I. T. (1984). Diccionario de filosofía. (O. Razinkov, Trad.) Moscú: Editorial Progreso. Obtenido de http://filosofia.org/

Fundación del Español Urgente. (23 de Marzo de 2021). Formación de gentilicios extranjeros. Obtenido de Lista de topónimos y gentilicios: https://www.wikilengua.org/index.php/Formaci%C3%B3n_de_gentilicios_extranjeros

Fundación del Español Urgente. (23 de Marzo de 2021). -ista (sufijo). Obtenido de Sufijos: https://www.wikilengua.org/index.php/-ista_(sufijo)

Gigerenzer, G. (2004). Mindless Statistics. The Journal of Socio-Economics, 587-606.

Greene, W. H. (2012). Econometric Analysis (International Edition). Essex: Pearson Education Limited.

Guerrero Jiménez, D. (2018). TRABAJO IMPRODUCTIVO, CRECIMIENTO Y TERCIARIZACIÓN (30 AÑOS DESPUÉS DE MARX Y KEYNES). International Journal of Political Economy, 1-16. Obtenido de https://www.researchgate.net/publication/327189598_Diego_Guerrero_TRABAJO_IMPRODUCTIVO_CRECIMIENTO_Y_TERCIARIZACION_30_ANOS_DESPUES_DE_MARX_Y_KEYNES

Haldane, J. B. (1945). Science and Everyday Life. Allahabad,: Kitab Mahal Publishers.

Hegel, F. (1968). Ciencia de la Lógica. Buenos Aires: Solar / Hachette.

Johnsen, J. (17 de Enero de 2019). What is the difference between positivism and empiricism? Obtenido de Quora: https://www.quora.com/What-is-the-difference-between-positivism-and-empiricism

Kohan, N., & Brito, P. (1 de Febrero de 2009). Marxismo para principiantes. Obtenido de nodo50: https://info.nodo50.org/Diccionario-basico-de-categorias.html

Kojevnikov, A. (19 de Junio de 2019). PROBABILITY, MARXISM, AND QUANTUM ENSEMBLES. Obtenido de The University of British Columbia: https://history.ubc.ca/wp-content/uploads/sites/23/2019/06/probability2012.pdf

Kolmogórov, A. (1956). Foundations of the Theory of Probability (Segunda Edición ed.). New York: Chelsea Publishing Company.

Laplace, P.-S. (2015). Ensayo Filosófico Sobre Probabilidades. Ciudad de México: Biblioteca Digital del Instituto Latinoamericano de Comunicación Educativa. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lenin, V. (1974). Cuadernos Filosóficos. Madrid: Editorial Ayuso.

Loughborough University. (21 de Febrero de 2008). Total Probability and Bayes’ Theorem. Obtenido de The theorem of total probability: https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook35/35_4_total_prob_bayes_thm.pdf

Maibaum, G. (1988). Teoría de Probabilidades y Estadística Matemática. (M. Á. Pérez, Trad.) La Habana, Cuba: Editorial Pueblo y Educación.

Marx, K. (1894). Capital. A Critique of Political Economy (Vol. III). New York: International Publishers.

Marx, K. (1989). Contribución a la Crítica de la Economía Política. Moscú: Editorial Progreso.

Marx, K. (2007). Elementos Fundamentales para la Crítica de la Economía Política (Grundrisse) 1857-1858 (Vol. I). (J. Aricó, M. Murmis, P. Scaron, Edits., & P. Scaron, Trad.) México, D.F.: Siglo XXI Editores.

Marx, K. (2010). El Capital (Vol. I). México, D.F.: Fondo de Cultura Económica.

Marx, K., & Engels, F. (1987). Karl Marx and Friedrich Engels Collected Works (Vol. XLII). Moscú: Progress Publishers.

Mittelhammer, R. (2013). Mathematical Statistics for Economics and Business (Segunda ed.). New York: Springer.

Nabi, I. (2020). Algunas Reflexiones Sobre la Distribución Binomial Negativa II (Un Análisis Teórico y Aplicado). Documento Inédito. Obtenido de https://marxianstatistics.files.wordpress.com/2020/12/algunas-reflexiones-sobre-la-distribucion-binomial-negativa-ii-isadore-nabi-2.pdf

Nabi, I. (21 de Marzo de 2021). Sobre el papel y la viabilidad de la violencia en la lucha social de las mujeres en particular y en las luchas sociales en general. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/03/11/sobre-el-papel-y-viabilidad-de-la-violencia-en-la-lucha-social-de-las-mujeres-en-particular-y-en-la-lucha-social-en-general/

Nabi, I., & B.A., A. (1 de Abril de 2021). UNA METODOLOGÍA EMPÍRICA PARA LA DETERMINACIÓN DE LA MAGNITUD DE LAS INTERRELACIONES SECTORIALES DENTRO DE LA MATRIZ INSUMO-PRODUCTO DESDE LOS CUADROS DE PRODUCCIÓN Y USOS PARA EL CASO DE ESTADOS UNIDOS 1997-2019. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/04/01/una-metodologia-empirica-para-la-determinacion-de-la-magnitud-de-las-interrelaciones-sectoriales-dentro-de-la-matriz-insumo-producto-desde-los-cuadros-de-oferta-utilizacion-para-el-caso-de-estados-uni/

North Carolina State University. (27 de Septiembre de 2020). People – Department of History . Obtenido de Dr Edith D Sylla: https://history.ncsu.edu/people/faculty_staff/edsssl

Perezgonzalez, J. (3 de Marzo de 2015). Fisher, Neyman-Pearson or NHST? A tutorial for teaching data testing. (L. Roberts, Ed.) Frontiers in Psychology, 6(223), 1-11. doi:10.3389/fpsyg.2015.00223

Poisson, S.-D. (2013). Researches into the Probabilities of Judgments in Criminal and Civil Cases. (O. Sheynin, Ed.) Berlin: arXiv. Obtenido de https://arxiv.org/abs/1902.02782

Radboud Univeristy. (11 de Febrero de 2011). Faculty of Philosophy, Theology and Religious Studies. Obtenido de Center for the History of Philosophy and Science. Edith Dudley Sylla: https://www.ru.nl/ptrs/chps/about-us/former-members/vm/sylla/

Rosental, M. (1961). Los problemas de la dialéctica en “EL CAPITAL” de Marx. Montevideo: Ediciones Pueblos Unidos.

Rosental, M. M., & Iudin, P. F. (1971). DICCIONARIO FILOSÓFICO. San Salvador: Tecolut.

Rosental, M., & Iudin, P. (1959). Diccionario filosófico abreviado. Montevideo: Ediciones Pueblos Unidos.

Russell, K. (29 de Enero de 2014). University of Manitoba. Obtenido de Hypothesis testing: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

StackExchange Philosophy. (15 de Junio de 2015). How empiricism and positivism is distinguished? What’s their differences? Obtenido de Philosophy: https://philosophy.stackexchange.com/questions/24937/how-empiricism-and-positivism-is-distinguished-whats-their-differences

TECH2 NEWS STAFF. (28 de Noviembre de 2019). SCIENTISTS MAY HAVE DISCOVERED A FIFTH FUNDAMENTAL ‘FORCE OF NATURE,’ THEY’RE CALLING IT X17. Obtenido de TECH2: https://www.firstpost.com/tech/science/scientists-may-have-discovered-a-fifth-fundamental-force-of-nature-theyre-calling-it-x17-7710261.html

Wikipedia. (27 de Septiembre de 2020). Population Genetics. Obtenido de J. B. S. Haldane: https://es.wikipedia.org/wiki/John_Burdon_Sanderson_Haldane

Wikipedia. (23 de Septiembre de 2020). Statistics. Obtenido de Inverse Probability: https://en.wikipedia.org/wiki/Inverse_probability

Wikipedia. (13 de Marzo de 2021). Relación de incertidumbre. Obtenido de Mecánica cuántica: https://es.wikipedia.org/wiki/Relaci%C3%B3n_de_indeterminaci%C3%B3n_de_Heisenberg

Williamson, J. (2010). In Defence of Objective Bayesianism. Oxford: Oxford University Press.

UNA INVESTIGACIÓN HISTÓRICA, TEÓRICA Y MATEMÁTICA SOBRE EL CARÁCTER DIALÉCTICO DE LOS FUNDAMENTOS EPISTEMOLÓGICOS DE LA COMPLEJIDAD EN LOS SISTEMAS DINÁMICOS NO-LINEALES DE LARGO PLAZO

ISADORE NABI

Abstracto

Desde Pierre-Simon Laplace en 1840 con su célebre “Ensayo Filosófico Sobre Probabilidades”, los filósofos y científicos se han interesado por dicotomía, sugerida por la observación de los hechos de la realidad, entre la incertidumbre y el determinismo. Henri Poincaré en 1908 coge el testigo de Laplace, comenzando así el esfuerzo consciente por unificarlas filosóficamente y dando así nacimiento a la Teoría del Caos, para que luego Edward Lorenz en 1963 diera a luz los Sistemas Complejos en su investigación titulada “Deterministic Nonperiodic Flow” y finalmente fue Benoit Mandelbrot en 1982 quien revolucionó la Geometría con el planteamiento de las superficies fractales en su obra “La Geometría Fractal de la Naturaleza”. Así como para los sistemas complejos ha sido de vital importancia ir comprendiendo unificadamente el caos y el determinismo, también fue para los sistemas filosóficos (particularmente la Antigua Grecia y del Idealismo Clásico Alemán) alcanzar precisión en las definiciones de las categorías esencia, forma, contenido, apariencia y fenómeno. Estas categorías filosóficas fueron trabajadas por los filósofos soviéticos en su búsqueda por comprender de manera holista la realidad, siendo plasmadas en el célebre “Diccionario Filosófico” publicado en 1971. La presente investigación plantea que la forma óptima de instrumentalizar esa visión filosófica es nutriéndola de los hallazgos realizados en el campo de la Teoría del Caos y también que la forma óptima de depurar teóricamente lo relacionado a los sistemas complejos es mediante su análisis a la luz de la Lógica Dialéctica-Materialista.

Palabras Clave: Materialismo Dialéctico, Sistemas Complejos, Fractales, Teoría del Caos, Escuela de Filosofía Soviética.

REREFENCIAS

Aravindh, M., Venkatesan, A., & Lakshmanan, M. (2018). Strange nonchaotic attractors for computation. Physical Review E, 97(5), 1-10. doi:https://doi.org/10.1103/PhysRevE.97.052212

Barnet, W., & Chen, P. (1988). Deterministic Chaos and Fractal Atrractors as Tools for NonParametric Dynamical Econometric Inference: With An Application to the Divisa Monetary Aggregates. Computational Mathematics and Modeling, 275-296. Obtenido de http://www.maths.usyd.edu.au/u/gottwald/preprints/testforchaos_MPI.pdf

Bjorvand, A. (1995). A New Approach to Intelligent Systems Theory. The Norwegian Institute of Technology, The University of Trondheim, Faculty of Electrical Engineering and Computer Science. Trondheim: The University of Trondheim. Recuperado el 15 de Abril de 2020, de https://www.anderstorvillbjorvand.com/_service/53/download/id/3378/name/19950428_project_report_fractal_logic.pdf

Elert, G. (11 de Agosto de 2020). Flow Regimes – The Physics Hypertextbook. Recuperado el 11 de Agosto de 2020, de https://physics.info/turbulence/

Gottwald, G., & Melbourne, I. (2016). The 0-1 Test for Chaos: A review. En U. Parlitz, E. G. Lega, R. Barrio, P. Cincotta, C. Giordano, C. Skokos, . . . J. Laskar, & C. G. Sokos (Ed.), Chaos Detection and Predictability (págs. 221-248). Berlin: Springer.

Halperin, B. (2019). Theory of dynamic critical phenomena. Physics Today, 72(2), 42-43. doi:10.1063/PT.3.4137

Jaynes, E. (2003). Probability Theory. The Logic of Science. Cambridge University Press: New York.

Kessler, D., & Greenkorn, R. (1999). Momentum, Heat, and Mass Transfer Fundamentals. New York: Marcel Denker, Inc.

Kilifarska, N., Bakmutov, V., & Melnyk, G. (2020). The Hidden Link Between Earth’s Magnetic Field and Climate. Leiden: Elsevier.

Landau, L. (1994). Física Teórica. Física Estadística (Segunda ed., Vol. 5). (S. Velayos, Ed., & E. L. Vázquez, Trad.) Barcelona: Reverté, S.A.

Laplace, P.-S. (1902). A Philosophical Essay on Probabilities (1 ed.). (E. M. Pinto, Trad.) London: JOHN WILEY & SONS. Obtenido de http://bibliotecadigital.ilce.edu.mx/Colecciones/ReinaCiencias/_docs/EnsayoFilosoficoProbabilidades.pdf

Lesne, A. (1998). Renormalization Methods. Critical Phenomena, Chaos, Fractal Structures. Baffins Lane, Chichester, West Sussex, England: John Wiley & Sons Ltd.

Lesne, A., & Laguës, M. (2012). Scale Invariance. From Phase Transitions to Turbulence (Primera edición, traducida del francés (que cuenta con dos ediciones) ed.). New York: Springer.

Li, S., & Li, H. (2006). Parallel AMR Code for Compressible MHD or HD Equations. Los Alamos National Laboratory, Mathematical Modeling and Analysis. Nuevo México: Applied Mathematics and Plasma Physics. Obtenido de https://web.archive.org/web/20160303182548/http://math.lanl.gov/Research/Highlights/amrmhd.shtml

Linder, J., Kohar, V., Kia, B., Hippke, M., Learned, J., & Ditto, W. (4 de Febrero de 2015). Strange nonchaotic stars. Recuperado el 16 de Abril de 2020, de Nonlinear Sciences > Chaotic Dynamics: https://arxiv.org/pdf/1501.01747.pdf

Lorenz, E. (1963). Deterministic Nonperiodic Flow. JOURNAL OF THE ATMOSPHERIC SCIENCES, 20, 130-141.

Mandelbrot, B. (1983). THE FRACTAL GEOMETRY OF NATURE. New York: W.H. Freeman and Company.

Marxist.org. (21 de Junio de 2018). Formal Logic and Dialectics. Recuperado el 14 de Abril de 2020, de The Meaning of Hegel’s Logic: https://www.marxists.org/reference/archive/hegel/help/mean05.htm

McCullagah, P., & Nelder, J. (1989). Generalized Linear Models (Segunda ed.). New York, United States of America: Chapman & Hall.

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para el TCL con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/UYRwHZaS

Nabi, I. (18 de Marzo de 2021). Diferentes abordajes para la LGN con variables dependientes. Obtenido de La Biblioteca del Pueblo | El Blog de Isadore Nabi: https://mega.nz/folder/lERCnLxD#0RP8MLIq6vEYR5GBsA7kog/folder/wVAiBTQZ

Oestreicher, C. (2007). A history of chaos theory. Dialogues in Clinical Neuroscience, 9(3), 279–289. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/pdf/DialoguesClinNeurosci-9-279.pdf

Pezard, L., & Nandrino, J. (2001). Paradigme dynamique en psychopathologie: la “Théorie du chaos”, de la physique à la psychiatrie [Dynamic paradigm in psychopathology: “chaos theory”, from physics to psychiatry]. Encephale, 27(3), 260-268. Obtenido de https://pubmed.ncbi.nlm.nih.gov/11488256/

Poincaré, H. (1908). Chance. En H. Poincaré, Science and Method (págs. 64-90). London: THOMAS NELSON AND SONS. Obtenido de https://www.stat.cmu.edu/~cshalizi/462/readings/Poincare.pdf

Princeton University. (30 de Septiembre de 2019). The Fundamental Postulate . Obtenido de http://assets.press.princeton.edu/chapters/s3_9634.pdf

ResearchGate. (3 de Mayo de 2018). When should one use Fuzzy set theory and Rough set theory? Is there any clear-cut line of difference between them? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/When_should_one_use_Fuzzy_set_theory_and_Rough_set_theory_Is_there_any_clear-cut_line_of_difference_between_them

ResearchGate. (2 de Mayo de 2020). What is the difference between Fuzzy rough sets and Rough fuzzy sets? Recuperado el 6 de Julio de 2020, de https://www.researchgate.net/post/What_is_the_difference_between_Fuzzy_rough_sets_and_Rough_fuzzy_sets

Rosental, M., & Iudin, P. (1971). Diccionario Filosófico. San Salvador: Tecolut.

Russell, K. (29 de Enero de 2014). Hypothesis testing. Recuperado el 15 de Abril de 2020, de Stats – Kevin Russell – University of Manitoba: http://home.cc.umanitoba.ca/~krussll/stats/hypothesis-testing.html

Sharma, V. (2003). Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier. The Open Cardiovascular Medicine Journal(3), 110-123.

Stanford Encyclopedia of Philosophy. (4 de Febrero de 2002). Quantum Logic and Probability Theory. Recuperado el 6 de Julio de 2020, de https://plato.stanford.edu/entries/qt-quantlog/

Valdebenito, E. (1 de Julio de 2019). Fractales: La Geometría del Caos. Recuperado el 11 de Agosto de 2020, de viXra: https://vixra.org/pdf/1901.0152v1.pdf

Werndl, C. (2013). What Are the New Implications of Chaos for Unpredictability? The British Journal for the Philosophy of Science, 60(1), 1-25. doi:10.1093/bjps/axn053

Gráfica de Sedimentación

SOBRE EL ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

ISADORE NABI

REFERENCIAS

Adler, J. (2012). R in a Nutshell (Segunda ed.). Sebastopol, Crimea, Rusia: O’Reilly.

Alger, N. (4 de Marzo de 2013). Intuitively, what is the difference between Eigendecomposition and Singular Value Decomposition? Obtenido de StackExchange Mathematics: https://math.stackexchange.com/questions/320220/intuitively-what-is-the-difference-between-eigendecomposition-and-singular-valu

Bellman, R. (1972). Dynamic Programming (Sexta Impresión ed.). New Jersey: Princeton University Press.

Dunn, K. G. (3 de Marzo de 2021). Process Improvement Using Data. Hamilton, Ontario, Canadá: Learning Chemical Engineering. Obtenido de 6.5. Principal Component Analysis (PCA) | 6. Latent Variable Modelling: https://learnche.org/pid/PID.pdf?60da13

Jollife, I. (2002). Principal Component Analysis. New York: Springer-Verlag.

Minitab. (18 de Abril de 2019). Interpretar todos los estadísticos y gráficas para Análisis de componentes principales. Obtenido de Soporte de Minitab 18: https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/multivariate/how-to/principal-components/interpret-the-results/all-statistics-and-graphs/

MIT. (23 de Febrero de 2021). Linear transformations and their matrices. Obtenido de Linear Algebra: https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/positive-definite-matrices-and-applications/linear-transformations-and-their-matrices/MIT18_06SCF11_Ses3.6sum.pdf

Nabi, I. (2020). Sobre los Estimadores de Bayes, el Análisis de Grupos y las Mixturas Gaussianas. Documento inédito.

Nabi, I. (3 de Abril de 2021). ¿Por qué se realiza un ajuste por re-escalamiento, normalización o estandarización sobre los datos en el contexto del aprendizaje automático? Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.com/2021/04/03/por-que-se-realiza-un-ajuste-por-re-escalamiento-normalizacion-o-estandarizacion-sobre-los-datos-en-el-contexto-del-aprendizaje-automatico/

Nabi, I. (2 de Abril de 2021). Una Interpretación Multidisciplinaria de los Espacios Característicos, Vectores Característicos y Valores Característicos. Obtenido de El Blog de Isadore Nabi: https://marxianstatistics.files.wordpress.com/2021/04/una-interpretacion-multidisciplinaria-de-los-espacios-caracteristicos-vectores-caracteristicos-y-valores-caracteristicos-isadore-nabi-1.pdf

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, II(11), 559-572. Obtenido de https://www.semanticscholar.org/paper/LIII.-On-lines-and-planes-of-closest-fit-to-systems-F.R.S./cac33f91e59f0a137b46176d74cee55c7010c3f8

Stack Exchange. (13 de Marzo de 2015). Understanding proof of isometry implies isomorphism. Obtenido de Mathematics: https://math.stackexchange.com/questions/1188730/understanding-proof-of-isometry-implies-isomorphism/1188732

Starmer, J. (2 de Abril de 2018). Principal Component Analysis (PCA). Obtenido de StatQuest: https://www.youtube.com/watch?v=FgakZw6K1QQ

Universidad Carlos III de Madrid. (7 de Noviembre de 2006). Análisis de Componentes Principales. Obtenido de Proceso de extracción de factores: http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/tema3am.pdf

Universitat de Girona. (24 de Enero de 2002). Número de factores a conservar. Obtenido de Análisis factorial: http://www3.udg.edu/dghha/cat/secciogeografia/prac/models/factorial(5).htm

Weisstein, E. (26 de Marzo de 2021). Projection. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Projection.html

Weisstein, E. (26 de Marzo de 2021). Transformation. Obtenido de MathWorld – A Wolfram Web Resource: https://mathworld.wolfram.com/Transformation.html

Wikipedia. (4 de Noviembre de 2020). Curse of dimensionality. Obtenido de Numerical Analysis: https://en.wikipedia.org/wiki/Curse_of_dimensionality

Wikipedia. (25 de Octubre de 2020). Isomorfismo. Obtenido de Álgebra: https://es.wikipedia.org/wiki/Isomorfismo

Wikipedia. (26 de Marzo de 2021). Isomorphism. Obtenido de Equivalence (mathematics): https://en.wikipedia.org/wiki/Isomorphism

Wikipedia. (22 de Marzo de 2021). Transcripción genética. Obtenido de Biosíntesis: https://es.wikipedia.org/wiki/Transcripci%C3%B3n_gen%C3%A9tica